So Chigusa

Axion detection with spin dynamics: magnons and axions

SC, Takeo Moroi, Kazunori Nakayama arXiv: 2001.10666, 2102.06179

4/6/2023 @ Joint IQ Initiative & PITT PACC Workshop

Axion dark matter

• These interactions work as effective magnetic fields $\overrightarrow{B}^{(f)}_a\sim \sqrt{2\rho_{\rm DM}}\frac{8a\overrightarrow{f}}{V}_{\rm DM}\sin(m_a t+\delta)$ that couple to the fermion spins $_{a}^{(J)} \sim \sqrt{2\rho_{\rm DM}}$ *gaff e* \overrightarrow{v}_{DM} sin($m_a t + \delta$)

- ‣ QCD axion is highly motivated by the strong CP problem
- ‣ Axion-like particles (ALPs) are motivated by the string theory
- ‣ Light axion can explain the DM relic abundance through the misalignment mechanism $a(\vec{x}, t) = a_0 \cos(m_a t + \delta)$
- ‣ Has model-dependent interactions with fermions

$$
\mathcal{L} = g_{aff} \frac{\partial_{\mu} a}{2m_f} \bar{f} \gamma^{\mu} \gamma_5 f \rightarrow H_{eff} = \frac{g_{aff}}{m_f} \nabla a \cdot S_f
$$

2

Arvanitaki et al., (2009)

‣ Various setups are considered depending on the coupling/mass range of interest

- ‣ Application of the NV center magnetometry with diamond samples
	- g_{aee} , $m_a \lesssim 10^{-4} \text{ eV}$

Spin dynamics for axion DM search

Only my works are shown just as examples

2302.12756

‣ Materials with strong hyperfine interaction

• g_{ann} , 10⁻⁶ eV $\leq m_a \leq 10^{-4}$ eV

in preparation

 F_s F. Barry+ 20

Brief comment on the NV center John F. Barry et al.: Sensitivity optimization for NV-diamond …

- ► The NV center in diamond hosts an e^- spin triplet system
- which consists of a substitutional nitrogen adjacent to a lattice
- The NV center works as a quantum sensor of, for example, the magnetic field

J. F. Barry+ ʻ20

▸ Fluorescence enables us to measure the quantum state of the e^- spin system $T = \sin \theta$ et al., 2010; $T = \sin \theta$ e Spinsystem va chance us to maasura the quantum state or

‣ The NV center dc magnetometry

The NV center sensitivity on axion DM

► Sensitivity on g_{dee} for a broad mass range $m_a \lesssim 10^{-4} \text{eV}$

Magnons

- ‣ Sub-MeV DM has a small momentum transfer *q* ≪ keV
	- DM de Broglie wavelength is longer than the interatomic distance \sim a few Å

 $λ$ _{de Broglie} ~ 1

We need collective excitations

Figurc 9 A spin **wave on a line** of **spins.** (a) **The spins viewed in perspective.** (b) **Spins** viewed from above, showing one wavelength. The wave is drawn through the ends of the spin vectors.

- Axion effectively works as a spatially uniform magnetic field
- ‣ DM excites the collective motion of spins rather than individual spin

$$
m\left(\frac{10^{-4} \text{ eV}}{m_{DM}}\right)
$$

12 Ferromagnetism and Antijerromagnetism

C. Kittel "Introduction to Solid State Physics [8th ed]"

(Ferromagnetic) magnon properties

Figurc 9 A spin **wave on a line** of **spins.** (a) **The spins viewed in perspective.** (b) **Spins** viewed from above, showing one wavelength. The wave is drawn through the ends of the spin vectors.

- ‣ Magnon is a bosonic quasi-particle corresponding to the spin wave excitation
- ‣ Typical scales
	- momentum *k* ≲ keV
	- \therefore energy $\omega \lesssim \mathcal{O}(100)$ meV
- \blacktriangleright Magnon is a NGB of spin SO(3) rotation
- ‣ Gapped due to soft breaking of *SO*(3)
	- Anisotropy of the crystal $ω_{int} ~ 0 100$ meV
	- External magnetic field *ωL*

$$
\omega_L \sim 0.12 \,\text{meV} \left(\frac{B_0}{1 \,\text{T}} \right)
$$

12 Ferromagnetism and Antijerromagnetism

2023/4/6 So Chigusa @ Joint IQ Initiative & PITT PACC Workshop $2023/4/6$ 30 Chigusa W Joint IQ initiative α PITT PAC

Quantum description of magnon ‣ Start with a 1D ferromagnetic system of spin-*s Sz* $H = -J\sum$ *S ^ℓ* ⋅ *S* ℓ_{+1} – $g_e\mu_BB_0$ \sum *ℓ ℓ ℓ* with *J* > 0 S_1 S_2 S_3 S_4 ... $J > 0$

$$
H = -J \sum_{\ell} \overrightarrow{S}_{\ell} \cdot \overrightarrow{S}_{\ell+1} - g_{\ell} \mu_{B} B_{0} \sum_{\ell} S_{\ell}^{z}
$$

with $J > 0$

- *Sz ℓ* $= s - a_{\ell}^{\dagger} a_{\ell}$
- Commutation relations are consistent: $\left[S_{\ell}^{i}, S_{\ell}^{j}\right] = i\epsilon^{ijk} S_{\ell}^{k} \Leftrightarrow \left[a_{\ell}, a_{\ell}^{\dagger}\right] = 1$

‣ Express spin fluctuations with bosonic operators *aℓ*

$$
S_{\ell}^{+} \equiv S_{\ell}^{x} + iS_{\ell}^{y} = \sqrt{2s} \sqrt{1 - \frac{a_{\ell}^{\dagger} q_{\ell}^{\dagger}}{2s}} a_{\ell}
$$

$$
S_{\ell}^{-} \equiv S_{\ell}^{x} - iS_{\ell}^{y} = \sqrt{2s} a_{\ell}^{\dagger} \sqrt{1 - \frac{a_{\ell}^{\dagger} q_{\ell}^{\dagger}}{2s}}
$$

10

‣ Using Fourier transformation, we obtain

Brief comment on anti-ferromagnet

‣ Consider instead a 1D anti-ferromagnetic system of spin- *s*

 $H = -J \sum \overline{S}_{\ell} \cdot \overline{S}_{\ell+1}$ with *ℓ* $S_{\ell} \cdot S_{\ell+1}$ with $J < 0$

Ferromagnet has 1 Type-II NGB Anti-ferromagnet has 2 Type-I NGBs

- ‣ Two sub-lattices are treated differently $S_{A\ell}^+ \simeq \sqrt{2sa_{\ell}}$; $S_{A\ell}^- \simeq \sqrt{2sa_{\ell}^+}$; $S_{A\ell}^z$ $S_{B\ell}^+ \simeq \sqrt{2s}b_{\ell}^{\dagger}$; $S_{B\ell}^- \simeq \sqrt{2s}b_{\ell}$; $S_{B\ell}^z$ $= s - a_{\ell}^{\dagger} a_{\ell}$ $= -s + b_{\ell}^{\dagger} b_{\ell}$
- ‣ There are 2 magnon modes with spin ↑ / ↓
	- Classification of non-relativistic NGBs associated with $SO(3) \rightarrow SO(2)$ breaking Watanabe & Murayama '12, Hidaka ʻ12

Sensitivity on axion DM

‣ DM-magnon conversion in ferromagnetic YIG is described by

 $H_{\text{int}} = - g_S \mu_B S_e \cdot B_a$

- **•** Resonance at $\omega_0 = \omega_{\text{int}} + \omega_L \simeq m_a$
	- Scan magnetic field $B_0 \sim \mathcal{O}(1)T$
	- \blacksquare Fixed total observation T_{total}
	- . Observation time T_{obs} for each scan step
- ‣ QUAX experiment

$$
= \sin(m_a t + \delta) \left(\sqrt{\frac{sN}{2}} \frac{m_a a_0 v_a^+}{f_a} \tilde{a}_0^{\dagger} + \text{h.c.} \right)
$$

 \tilde{a}_0 : $k = 0$ (Kittel) mode of magnon

SC, Moroi, Nakayama [2001.10666]

Barbieri, et al. ʻ89, Barbieri, et al. '16, Crescini, et al. ʻ20

Axions

Axion properties

2023/4/6 So Chigusa @ Joint IQ Initiative & PITT PACC Workshop 14

‣ Examples include the FKM model + Hubbard interaction (a model of anti-ferromagnetic topological insulator)

• Axion is a spin fluctuation $\delta\theta$ in a magnetic material with the following interaction:

$$
\propto \delta \theta \, F^{\mu\nu} \tilde{F}_{\mu\nu}
$$

$$
\bigwedge\!\!\bigwedge\!\!\bigwedge
$$

R. Li, J. Wang, X. Qi, S. Zhang Nature Physics 6, 284-288 (2010)

A. Sekine, K. Nomura '14

The Fu-Kane-Mele (FKM) model

Lattice & 1st Brillouin zone structure

Figure from Sekine, et al. '14 lattices (red and blue of the first lattice forms and $\frac{1}{1-\frac{1}{$

• Band crossing occurs at symmetry-enhanced points at the Fermi level, representing its $natural$ as a semimetal

‣ Band structure

• Hamiltonian of outermost electrons at half-filling, with the mean-field approximation. The mean-field approximation. This parameter \mathbf{r} ces. The diamond lattice consists of two sublattices (*A* and

$$
H = -t \sum_{\langle \ell, m \rangle} c_{\ell}^{\dagger} c_m + i \lambda \sum_{\langle \langle \ell, m \rangle \rangle} c_{\ell}^{\dagger} \overrightarrow{\sigma} \cdot (\overrightarrow{d}_{\ell m}^1 \times \overrightarrow{d}_{\ell m}^2) c_m
$$

L. Fu, C. L. Kane, E. J. Mele, PRL 98, 106803 (2007)

Symmetry-enhanced points

Low-energy effective action

- Low-energy phenomenology is mainly determined by \longrightarrow bands
- Figure 1. Those modes around $k = M_r$ are expressed by the effective action

$$
S = \int d^4x \sum_{r=1,2,3} \overline{\psi}_r \left[i\gamma^\mu (\partial_\mu - ieA_\mu) - \delta t \right] \psi_r
$$

with Dirac electron $\psi \sim (A \uparrow, A \downarrow, B \uparrow, B \downarrow)$

 \cdot A small gap δt can be introduced through symmetry breaking (e.g., lattice distortion) Brillouin zone of a fcc lattice. Green circles represent the *X* points.

Figure from Sekine, et al. '14 lattices (red and blue blues), and the first substitution of the f

► Coulomb interaction makes it hard to fill 2 e^- s in an orbital

 $H = -t \sum_{\ell} c_{\ell}^{\dagger} c_m + U \sum_{\ell} n_{\ell} n_{\ell}$: Hubbard interaction ⟨*ℓ*,*m*⟩ $c_e^{\dagger}c_m + U\sum$ *ℓ* $n_{\ell\uparrow}n_{\ell\downarrow}$: Hubbard interaction H_U

- **.** In the half-filled materials, large U enforces $n_{e\uparrow} + n_{e\downarrow} = 1$, making the system a Mott insulator
- \triangleright In the large U limit, we obtain an effective spin-spin exchange interaction

$$
H_{\text{eff}} \sim H_t \frac{1}{H_U} H_t = \frac{t^2}{U} \sum_{\langle \ell, m \rangle} \overrightarrow{S}_{\ell} \cdot \overrightarrow{S}_m
$$

• Since $J = -t^2/U < 0$, the system acquires an anti-ferromagnetic ordering

17

‣ Define an anti-ferromagnetic (Néel) order parameter $\langle S_{\ell,A} \rangle = - \langle S_{\ell,B} \rangle \equiv \overline{m}$

Induced spin-electron interaction

for sublattices A & B

• Apply the mean-field approximation to $H_U = U \sum n_{\ell \uparrow} n_{\ell \downarrow}$

$$
H_U \simeq U \sum_{\ell} \left(\langle n_{\ell\uparrow} \rangle n_{\ell\downarrow} + \langle n_{\ell\downarrow} \rangle n_{\ell\uparrow} - \langle n_{\ell\uparrow} \rangle \langle n_{\ell\downarrow} \rangle - \langle c_{\ell\uparrow}^{\dagger} c_{\ell\downarrow} \rangle c_{\ell\downarrow}^{\dagger} c_{\ell}
$$

$$
= U \sum_{\ell} \left(\frac{1}{2} + \langle S_{\ell}^{z} \rangle \right) n_{\ell\downarrow} + \left(\frac{1}{2} - \langle S_{\ell}^{z} \rangle \right) n_{\ell\uparrow} - \langle S_{\ell}^{+} \rangle c_{\ell\downarrow}^{\dagger} c_{\ell\uparrow}
$$

▸ This gives an axionic interaction btw \vec{m} and Dirac e^- s in the low energy

 ϵ on the other hand, in the other hand, in the case of the case of the case of the case of threegns for A/B e s $\mathfrak n$ \mathbf{r}

 $\mathbf{r} = \mathbf{r} \cdot \mathbf{r}$ and lattice, which consists of two sub-A. Sekine, K. Nomura '14

2023/4/6 So Chigusa @ Joint IQ Initiative & PITT PACC Workshop Ω zuzb/4/0 su chigusa w Jo

$$
S = \int d^4x \sum_{r=1,2,3} \overline{\psi}_r [i\gamma^\mu (\partial_\mu - ieA_\mu) - \delta t - i\gamma_5 Um_r] \psi_r \text{ with } \gamma_5 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ \psi \sim (A \uparrow, A \downarrow, B \uparrow, B \downarrow)
$$

- It is axionic because the order parameter has opposite signs for *A/B e*[−]s
- Three Dirac e^- s $ψ_r$ ($r = 1,2,3$) couple to the corresponding m_r

E ≪ *δt* phenomenology \rightarrow *E* ≪ *δt* phenomenology after integrating out Dirac e^- s

Also, the dynamical fluctuation $\vec{m} \rightarrow \vec{m} + \delta \vec{m}$ gives the dynamical axion mode *δθ*

$$
S_{\theta} = \frac{\alpha_e}{4\pi} \int d^4x \,\theta F_{\mu\nu} \widetilde{F}^{\mu\nu} \qquad \theta \equiv \pi + \sum_r \theta_r = \pi + \sum_r \tan^{-1} \frac{r}{r}
$$

$$
\Delta S_{\theta} = \frac{\alpha_e}{4\pi} \int d^4x \, \delta\theta \, F_{\mu\nu} \, \widetilde{F}^{\mu\nu}
$$

$$
\delta\theta \simeq \frac{1}{4} \sum_r \frac{U/\delta t}{1 + U^2 m_r^2/\delta t^2} \delta m_r
$$

. This can also be rewritten as a linear combination of magnons $\tilde{\alpha}_0, \tilde{\beta}_0$

$$
\delta\theta \simeq \sqrt{\frac{s}{2N}}(u_0 - v_0) \bigg[D^* \tilde{\alpha}_0^\dagger - D \tilde{\beta}_0^\dagger + \text{h.c.} \bigg]
$$

Axion to axion conversion

 \blacktriangleright Under background \overline{B}_0 , axion oscillation generates an effective electric field $\overline{}$

 $\overrightarrow{E}_a(\overrightarrow{x},t) \simeq E_0 \hat{z} \cos(m_a t + \delta)$ with $E_0 = -\frac{1}{\delta}$ *ϵ* $g_{a\gamma\gamma}a_0B_0$

- Uniform classical field same as *B a*
- \overline{E}_a excites an axion = a linear combination of magnons • Resonance at $m_a \simeq \omega_{int} \pm \omega_L$
	- . ω_{int} : Intrinsic gap
	- $\tilde{\alpha}_0$: AF magnon with spin \uparrow , $\omega = \omega_{int} + \omega_L$
	- $\tilde{\beta}_0$: AF magnon with spin ↓, $ω = ω_{int} ω_L$

Sensitivity on axion DM

- ‣ Illustration of possible sensitivity curves
- ‣ "Plausible" choice of parameters
	- $\omega_{\text{int}} = 1 \text{ meV}$
	- $B_0 \sim \mathcal{O}(1)$ T
	- etc.
- ‣ A different model of axionic material as the TOORAD experiment

21

S. Chigusa, T. Moroi, K. Nakayama [2102.06179]

David J. E. Marsh+ '19, J. Schütte-Engel+ '21

Conclusion

‣ Spin dynamics in materials give us various approaches to axion DM search!

22

Conclusion

‣ Spin dynamics in materials give us various approaches to axion DM search!

Backup slides

The NV center sensitivity on axion DM

► Sensitivity on g_{dee} for a broad mass range $m_a \lesssim 10^{-4}$ eV

25

Relationship w/ topology

- Time reversal symmetry forces θ to be one of below
	- $\theta = 0$ (normal insulator)
	- $\theta = \pi$ (topological insulator)
- SPT phase
	- = "symmetry protected topological phase"

㾎Normal / Topological insulators have different topologies - Topological invariant θ is evaluated w/ berry connection = No continuous deformation

$$
\mathcal{A}_{i}^{\alpha\beta} = -i \langle u_{k}^{\alpha} | \frac{\partial}{\partial k_{i}} | u_{k}^{\beta} \rangle \qquad \theta \equiv \frac{1}{4\pi} \int_{BZ} d^{3}k \, e^{ijk} \operatorname{Tr} \left[\mathcal{A}_{i} \partial_{j} \mathcal{A}_{k} + i \frac{2}{3} \mathcal{A}_{i} \mathcal{A}_{j} \mathcal{A}_{k} \right]
$$
\n
$$
\text{connection Bloch states \leftrightarrow energy eigenstates} \qquad \text{Brillouin zone}
$$

26 / 23

Berry connection Bloch states↔energy eigenstates

α

θ is axion term 㾎Topological EM response

㾎Rich phenomenology like

 $S =$

- Faraday rotation

27 / 23

2022/2/8 So Chigusa @ KEK IPNS-IMSS-QUP Joint workshop

rotation of polarization plane of linearly polarized photon

cf. cosmological birefringence

V. Dziom+ Nat. Commun. 8, 15197 (2017)

Order estimate of physical parameters

$$
\mathcal{L}_{\text{int}} = \frac{\alpha}{2\pi} \frac{1}{f_{\text{CM}}} \delta \theta F \tilde{F}
$$

$$
f_{\text{CM}} \sim \left((u_0 - v_0) |D| \sqrt{\omega_0 V_{\text{unit}}} \right)^{-1}
$$
\n
$$
D = \sum_r \frac{U/\delta t}{1 + U^2 m_r^2 \delta t^2} (O_{r1} - iO_{r2}) \sim O(1)
$$
\n
$$
\sim 200 \text{ keV} \left(\frac{1}{u_0 - v_0} \right) \left(\frac{1}{|D|} \right) \left(\frac{1 \text{ meV}}{\omega_0} \right)^{1/2} \left(\frac{(5 \text{ Å})^3}{V_{\text{unit}}} \right)^{1/2}
$$
\nwhen $U \sim \delta t$

