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Axion dark matter
‣ QCD axion is highly motivated by the strong CP problem 
‣ Axion-like particles (ALPs) are motivated by the string theory  

‣ Light axion can explain the DM relic abundance through the 
misalignment mechanism 

 

‣ Has model-dependent interactions with fermions 

         

• These interactions work as effective magnetic fields 
 that couple to the fermion spins 

a( ⃗x , t) = a0 cos(mat + δ)

ℒ = gaff
∂μa
2mf

f̄γμγ5 f → Heff =
gaff

mf
∇a ⋅ Sf

⃗B ( f )
a ∼ 2ρDM

gaff

e
⃗v DM sin(mat + δ)
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Arvanitaki et al., (2009)
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‣ Various setups are considered depending on the coupling/mass range of interest
Spin dynamics for axion DM search

3

Only my works are shown just as examples

Electron spins

‣ Magnons:  

‣ Application of the NV center magnetometry 
with diamond samples 
•  , 

gaee

gaee ma ≲ 10−4 eV

‣ Axions: gaγγ
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‣ The ferromagnetic phase of superfluid  

•  ,  

‣ Materials with strong hyperfine interaction 
•  , 

3He

gann ma ∼ 10−6 eV

gann 10−6 eV ≲ ma ≲ 10−4 eV
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Brief comment on the NV center

‣ The NV center in diamond hosts an  spin triplet system 
‣ Fluorescence enables us to measure the quantum state of the  spin system 
‣ The NV center works as a quantum sensor of, for example, the magnetic field

e−

e−

4

application of resonant microwaves (MWs) near 2.87 GHz.
Upon optical excitation, nonradiative decay through a spin-
state-dependent intersystem crossing (Goldman, Doherty
et al., 2015; Goldman, Sipahigil et al., 2015) produces both
spin-state-dependent fluorescence contrast and optical spin
initialization into the NV− center’s ms ¼ 0 ground state; see
Fig. 1(b).
Relative to alternative technologies (Grosz, Haji-Sheikh,

and Mukhopadhyay, 2017), sensors employing NV− centers
excel in technical simplicity and spatial resolution (Grinolds et
al., 2014; Arai et al., 2015; Jaskula, Bauch et al., 2017). Such
devices may operate as broadband sensors, with bandwidths
up to ∼100 kHz (Acosta, Jarmola et al., 2010; Barry et al.,
2016; Schloss et al., 2018), or as high-frequency detectors for
signals up to several GHz (Shin et al., 2012; Cai et al., 2013;
Loretz, Rosskopf, and Degen, 2013; Steinert et al., 2013;
Tetienne et al., 2013; Pelliccione et al., 2014; Boss et al.,
2016, 2017; Hall et al., 2016; Lovchinsky et al., 2016; Pham
et al., 2016; Shao et al., 2016; Wood et al., 2016; Aslam et al.,
2017; Schmitt et al., 2017; Casola, van der Sar, and Yacoby,
2018; Horsley et al., 2018). Importantly, effective optical
initialization and readout of NV− spins does not require
narrow-linewidth lasers; rather, a single free-running 532-nm
solid-state laser is sufficient. NV-diamond sensors operate at
ambient temperatures, pressures, and magnetic fields and thus
require no cryogenics, vacuum systems, or tesla-scale applied
bias fields. Furthermore, diamond is chemically inert, making
NV− devices biocompatible. These properties allow sensors to
be placed within ∼1 nm of field sources (Pham et al., 2016),
which enables magnetic-field imaging with nanometer-scale
spatial resolution (Grinolds et al., 2014; Arai et al., 2015;
Jaskula, Bauch et al., 2017). NV-diamond sensors are also
operationally robust and may function at pressures up to
60 GPa (Doherty et al., 2014; Ivády et al., 2014; Hsieh et al.,

2019) and temperatures from cryogenic to 600 K (Toyli
et al., 2012, 2013; Plakhotnik et al., 2014).
Although single NV− centers find numerous applications in

ultra-high-resolution sensing due to their angstrom-scale size
(Balasubramanian et al., 2008; Maze et al., 2008; Casola, van
der Sar, and Yacoby, 2018), sensors employing ensembles of
NV− centers provide improved signal-to-noise ratio (SNR) at
the cost of spatial resolution by virtue of statistical averaging
over multiple spins (Taylor et al., 2008; Acosta et al., 2009).
Diamonds may be engineered to contain concentrations of
NV− centers as high as 1019 cm−3 (J. Choi et al., 2017), which
facilitates high-sensitivity measurements from single-channel
bulk detectors as well as wide-field parallel magnetic imaging
(Taylor et al., 2008; Steinert et al., 2010, 2013; Pham et al.,
2011; Le Sage et al., 2013; Glenn et al., 2015; Davis et al.,
2018; Fescenko et al., 2019). These engineered diamonds
typically contain NV− centers with symmetry axes distributed
along all four crystallographic orientations, each primarily
sensitive to the magnetic-field projection along its axis. Thus,
ensemble-NV− devices provide full vector magnetic-field
sensing without heading errors or dead zones (Maertz
et al., 2010; Steinert et al., 2010; Pham et al., 2011; Le
Sage et al., 2013; Schloss et al., 2018). NV− centers have also
been employed for high-sensitivity imaging of temperature
(Kucsko et al., 2013), strain, and electric fields (Dolde et al.,
2011; Barson et al., 2017). Recent examples of ensemble-
NV− sensing applications include magnetic detection of
single-neuron action potentials (Barry et al., 2016); magnetic
imaging of living cells (Le Sage et al., 2013; Steinert et al.,
2013), malarial hemozoin (Fescenko et al., 2019), and
biological tissue with subcellular resolution (Davis et al.,
2018); nanoscale thermometry (Kucsko et al., 2013; Neumann
et al., 2013); single protein detection (Shi et al., 2015;
Lovchinsky et al., 2016); nanoscale and micron-scale NMR
(Staudacher et al., 2013; Loretz et al., 2014; Sushkov et al.,
2014; DeVience et al., 2015; Rugar et al., 2015; Kehayias
et al., 2017; Bucher et al., 2018; Glenn et al., 2018); and
studies of meteorite composition (Fu et al., 2014) and
paleomagnetism (Farchi et al., 2017; Glenn et al., 2017).
Despite demonstrated utility in a number of applications,

the present performance of ensemble-NV− sensors remains far
from theoretical limits. Even the most sensitive ensemble-
based devices demonstrated to date exhibit readout fidelities
F ∼ 0.01, limiting sensitivity to at best ∼100 times worse than
the spin-projection limit. Additionally, reported dephasing
times T"

2 in NV-rich diamonds remain 100 to 1000 times
shorter than the theoretical maximum of 2T1 (Jarmola et al.,
2012; Bauch et al., 2018, 2019). As a result, whereas
present state-of-the-art ensemble-NV− magnetometers exhibit
pT=

ffiffiffiffiffiffi
Hz

p
-level sensitivities, competing technologies such as

superconducting quantum interference devices (SQUIDs) and
spin-exchange relaxation-free magnetometers exhibit sensi-
tivities at the fT=

ffiffiffiffiffiffi
Hz

p
level and below (Kitching, 2018). This

∼1000 times sensitivity discrepancy corresponds to a
∼106 times increase in required averaging time, which
precludes many envisioned applications. In particular, the
sensing times required to detect weak static signals with an
NV-diamond sensor may be unacceptably long; for example,
biological systems may have only a short period of viability.

N

V

NV || [111]

(a) (b)

FIG. 1. Overview of the nitrogen-vacancy (NV) center quantum
system. (a) Diagram of diamond lattice containing an NV center,
which consists of a substitutional nitrogen adjacent to a lattice
vacancy. The green arrow marks the NV symmetry axis, oriented
along the ½11̄ 1̄$ diamond crystallographic axis for the particular
NV center shown here. From Pham, 2013. (b) Energy level
diagram for the negatively charged NV− center in diamond, with
zero-field splitting D between the ground-state electronic spin
levels ms ¼ 0 and ms ¼ %1. The ms ¼ %1 energy levels
experience a Zeeman shift in the presence of a magnetic field
B⃗, which forms the basis for NV− magnetometry. Adapted from
Schloss et al., 2018.

John F. Barry et al.: Sensitivity optimization for NV-diamond …

Rev. Mod. Phys., Vol. 92, No. 1, January–March 2020 015004-3
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[Figure created by S.Chigusa]

‣ The NV center dc magnetometry
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The NV center sensitivity on axion DM

‣ Sensitivity on  for a broad mass range gaee ma ≲ 10−4 eV

6

SC+ [2302.12756]
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We need collective excitations
‣ Sub-MeV DM has a small momentum transfer  

• DM de Broglie wavelength is longer than the interatomic distance  a few  

                                                    

• Axion effectively works as a spatially uniform magnetic field 

‣ DM excites the collective motion of spins rather than individual spin 

q ≪ keV

∼ Å

λde Broglie ∼ 1 m ( 10−4 eV
mDM )

8

12 Ferromagnetism and Antijerromagnetism 

Figurc 9 A spin wave on a line of spins. (a) The spins viewed in perspective. (b) Spins viewed 
from ahow, showing U I I ~  wavclcngth. The wave is drawn through the ends of the spin vectors. 

Here J is the exchange integral and hSp is the angular ~no~nentum of the 
spin at sitc p .  If we treat the spins Sp as classical vectors, then in the ground 
statc Sp . Spt = SP and the exchange energy of the system is Uo = -2NJS2. 

What is the energy of the first excited state? Consider an excited state with 
one particular spin reversed, as in Fig. 8b. We see from ( 1 2 )  that this increases 
the energy by ~JS', so that U 1  = Uo + 8]s2. Rut we can form an excitation of 
mudl lower energy- i1 we let all the spins share the reversal, as in Fig. 8c. The 
elementary excitations of a spin system have a wavelike form and are called 
maglions (Fig. 9). These are analogous to lattice vibrations or phonons. Spin 
waves are oscillations in the relative orientations of spins on a lattice; lattice vi- 
brations are oscillations in the relative positions of atoms on a lattice. 

We now give a classical derivation of the magnon dispersion relation. The 
terms in ( 1 2 )  which involve the pth spin are 

117e write magnetic mornent at site p as /+ = -gpBSp Then (13) becomes 

which is of the form -pp . Bp, where the effective magnetic field or exchange 
field that acts on the pth spin is 

Fro111 ~llechanics the rate of change of the angular momerltu~n fiSp is equal 
to the torquc pp X Bp which acts on the spin: fi dS,ldt = ~ c ,  X B,,, or 

In Cartesian components 

arid si~~lilarly for dSzMt and dS;ldt. These equations involve products of spin 
components and are nonlinear. 

C. Kittel ”Introduction to Solid State Physics [8th ed]”
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(Ferromagnetic) magnon properties
‣ Magnon is a bosonic quasi-particle corresponding to the spin wave excitation 

‣ Typical scales 
• momentum  

• energy  

‣ Magnon is a NGB of spin  rotation 

‣ Gapped due to soft breaking of  
• Anisotropy of the crystal  ̶  

• External magnetic field  

k ≲ keV

ω ≲ 𝒪(100) meV

SO(3)

SO(3)

ωint ∼ 0 100 meV

ωL

ωL ∼ 0.12 meV ( B0

1 T )
9

12 Ferromagnetism and Antijerromagnetism 

Figurc 9 A spin wave on a line of spins. (a) The spins viewed in perspective. (b) Spins viewed 
from ahow, showing U I I ~  wavclcngth. The wave is drawn through the ends of the spin vectors. 

Here J is the exchange integral and hSp is the angular ~no~nentum of the 
spin at sitc p .  If we treat the spins Sp as classical vectors, then in the ground 
statc Sp . Spt = SP and the exchange energy of the system is Uo = -2NJS2. 

What is the energy of the first excited state? Consider an excited state with 
one particular spin reversed, as in Fig. 8b. We see from ( 1 2 )  that this increases 
the energy by ~JS', so that U 1  = Uo + 8]s2. Rut we can form an excitation of 
mudl lower energy- i1 we let all the spins share the reversal, as in Fig. 8c. The 
elementary excitations of a spin system have a wavelike form and are called 
maglions (Fig. 9). These are analogous to lattice vibrations or phonons. Spin 
waves are oscillations in the relative orientations of spins on a lattice; lattice vi- 
brations are oscillations in the relative positions of atoms on a lattice. 

We now give a classical derivation of the magnon dispersion relation. The 
terms in ( 1 2 )  which involve the pth spin are 

117e write magnetic mornent at site p as /+ = -gpBSp Then (13) becomes 

which is of the form -pp . Bp, where the effective magnetic field or exchange 
field that acts on the pth spin is 

Fro111 ~llechanics the rate of change of the angular momerltu~n fiSp is equal 
to the torquc pp X Bp which acts on the spin: fi dS,ldt = ~ c ,  X B,,, or 

In Cartesian components 

arid si~~lilarly for dSzMt and dS;ldt. These equations involve products of spin 
components and are nonlinear. 

C. Kittel ”Introduction to Solid State Physics [8th ed]”

Mitridate, et al. ‘20

ω0 =
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Quantum description of magnon
‣ Start with a 1D ferromagnetic system of spin-  

 

with  

‣ Express spin fluctuations with bosonic operators  

 

 

 

• Commutation relations are consistent: 

    

s

H = − J∑
ℓ

⃗S ℓ ⋅ ⃗S ℓ+1 − geμBB0 ∑
ℓ

Sz
ℓ

J > 0

aℓ

S+
ℓ ≡ Sx

ℓ + iSy
ℓ = 2s 1 −

a†
ℓaℓ

2s
aℓ

S−
ℓ ≡ Sx

ℓ − iSy
ℓ = 2sa†

ℓ 1 −
a†

ℓaℓ

2s

Sz
ℓ = s − a†

ℓaℓ

[Si
ℓ, Sj

ℓ] = iϵijkSk
ℓ ⇔ [aℓ, a†

ℓ] = 1

10

...

‣ Using Fourier transformation, we obtain 
 

‣ Also, we can check 
 

A magnon has 

H ≃ ∑
k

[2Js(1 − cos(ka))

ωk

+ geμBB0

ωL

] a†
k ak + ⋯

∑
ℓ

Sz
ℓ = Ns − ∑

k

a†
k ak

ΔSz = − 1



2023/4/6  So Chigusa ＠ Joint IQ Initiative & PITT PACC Workshop

Brief comment on anti-ferromagnet
‣ Consider instead a 1D anti-ferromagnetic system of spin-  

 with  

‣ Two sub-lattices are treated differently 
  ;    ;   

  ;    ;   

‣ There are 2 magnon modes with spin  
• Classification of non-relativistic NGBs 
associated with  breaking 

Ferromagnet has 1 Type-II NGB 
Anti-ferromagnet has 2 Type-I NGBs 

s

H = − J∑
ℓ

⃗S ℓ ⋅ ⃗S ℓ+1 J < 0

S+
Aℓ ≃ 2saℓ S−

Aℓ ≃ 2sa†
ℓ Sz

Aℓ = s − a†
ℓaℓ

S+
Bℓ ≃ 2sb†

ℓ S−
Bℓ ≃ 2sbℓ Sz

Bℓ = − s + b†
ℓbℓ

↑ / ↓

SO(3) → SO(2)

11

...SA1 SB2SB1 SA2

Watanabe & Murayama ’12, Hidaka ‘12
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Sensitivity on axion DM
‣ DM-magnon conversion in ferromagnetic YIG is described by 

 

     

 :  (Kittel) mode of magnon 

‣ Resonance at  

• Scan magnetic field  

• Fixed total observation  

• Observation time  for each scan step 

‣ QUAX experiment

Hint = − gSμB
⃗S e ⋅ ⃗B a

= sin(mat + δ)( sN
2

maa0v+
a

fa
ã†

0 + h.c.)
ã0 k = 0

ω0 = ωint + ωL ≃ ma

B0 ∼ 𝒪(1) T

Ttotal

Tobs

12

SC, Moroi, Nakayama [2001.10666]

YIG

Barbieri, et al. ‘89, Barbieri, et al. ’16, Crescini, et al. ‘20
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Axion properties
‣ Axion is a spin fluctuation  in a magnetic material with the following interaction: 

‣ Examples include the FKM model + Hubbard interaction 
(a model of anti-ferromagnetic topological insulator)

δθ

14

δθ γ5

Dirac electron ψ

∝ δθ FμνF̃μν

R. Li, J. Wang, X. Qi, S. Zhang Nature Physics 6, 284‒288 (2010)

A. Sekine, K. Nomura ’14
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The Fu-Kane-Mele (FKM) model
‣ Lattice & 1st Brillouin zone structure 

‣ Hamiltonian of outermost electrons 
 

‣ Band structure 

• Band crossing occurs at symmetry-enhanced 
points at the Fermi level, representing its 
nature as a semimetalH = − t ∑

⟨ℓ,m⟩

c†
ℓcm + iλ ∑

⟨⟨ℓ,m⟩⟩

c†
ℓ ⃗σ ⋅ ( ⃗d 1

ℓm × ⃗d 2
ℓm)cm

15

Figure from Sekine, et al. ’14

J. Phys. Soc. Jpn. FULL PAPERS

When the strength U is intermediate, it has been shown that
the spin liquid phase emerges22–26 and pointed out the pos-
sibility of the fractional topological insulator phase.21 In an-
other model of a 2D topological insulator with on-site interac-
tion, the Bernevig-Hughes-Zhang-Hubbard model, the exis-
tence of the topological antiferromagnetic insulator phase has
been pointed out.27 On the other hand, in the case of three-
dimensions, the Fu-Kane-Mele model on the diamond lattice,
the 3D analog of the Kane-Mele model, is known as a model
for a 3D topological insulator.28, 29 What is the properties
of an interacting Fu-Kane-Mele model, the Fu-Kane-Mele-
Hubbard model? So far there has been no study on this model,
although interesting phenomena are expected to emerge.

In this paper, we focus on the topological magnetoelectric
response of the antiferromagnetic insulator phase in the ex-
tended Fu-Kane-Mele-Hubbard model on a diamond lattice
at half-filling, within the mean-field approximation. This pa-
per is organized as follows. In Sec. 2, the model we adopt
is explained. We take into account the on-site and nearest-
neighbor repulsive electron-electron interactions. In Sec. 3,
the mean-field phase diagram is presented. In Sec. 4, we ob-
tain analytically the value of ✓ in the antiferromagnetic insula-
tor phase. First we show that we can derive the Dirac Hamil-
tonian in the antiferromagnetic insulator phase. Then based
on the Fujikawa’s method,30, 31 we obtain the theta term as
a consequence of the chiral anomaly. In Sec. 5, we discuss
the realization of the dynamical axion field in our model. we
also discuss the relation between our antiferromagnetic insu-
lator phase and the so-called “Aoki phase”, a symmetry bro-
ken phase induced by interactions in lattice QCD.32

2. Model

Let us consider a 3D lattice model with electron correlation
and spin-orbit coupling. The model we adopt is the extended
Fu-Kane-Mele-Hubbard model on a diamond lattice at half-
filling, in which the Hamiltonian is given by H = H0 + Hint
with the non-interacting part

H0 =
X

hi, ji,�

ti jc
†

i�c j� + i
4�
a2

X

hhi, jii

c
†

i
� · (d1

i j
⇥ d2

i j
)c j, (4)

and the interaction part

Hint = U

X

i

ni"ni# +
X

hi, ji

Vi jnin j, (5)

where c
†

i� is an electron creation operator at a site i with
spin �(=", #), ni� = c

†

i�ci�, ni = ni" + ni#, and a is the lat-
tice constant of the fcc lattice. The first and second terms
of H0 represent the nearest-neighbor hopping and the next-
nearest-neighbor spin-orbit coupling, respectively. d1

i j
and d2

i j

are the two vectors which connect two sites i and j of the
same sublattice. They are given by two of the four nearest-
neighbor vectors, a

4 (1, 1, 1), a

4 (�1,�1, 1), a

4 (1,�1,�1), and
a

4 (�1, 1,�1), with proper signs (directions of the vectors).
� = (�1,�2,�3) are the Pauli matrices for the spin degree
of freedom. The first and second terms of Hint describe the
on-site and nearest-neighbor repulsive electron-electron inter-
actions, respectively. The lattice structure of a diamond lattice
is shown in Fig. 1(a).

It is convenient to express the non-interacting part H0 of
the Hamiltonian in terms of the 4⇥4 alpha (gamma) matri-

Fig. 1. (Color online) (a) A diamond lattice, which consists of two sub-
lattices (red and blue), and each sublattice forms a fcc lattice. (b) The first
Brillouin zone of a fcc lattice. Green circles represent the X points.

ces. The diamond lattice consists of two sublattices (A and
B), with each sublattice forming a fcc lattice. In such a case,
we can define the basis ck ⌘ [ckA", ckA#, ckB", ckB#]T where
the wave vector k is given by the points in the first Brillouin
zone of the fcc lattice [see Fig. 1(b)]. Then the single-particle
HamiltonianH0(k) [H0 ⌘

P
k c
†

kH0(k)ck] is written as28, 29

H0(k) =
5X

µ=1

Rµ(k)↵µ, (6)

where the coe�cients Rµ(k) are given by

R1(k) = �[sin u2 � sin u3 � sin(u2 � u1) + sin(u3 � u1)],

R2(k) = �[sin u3 � sin u1 � sin(u3 � u2) + sin(u1 � u2)],

R3(k) = �[sin u1 � sin u2 � sin(u1 � u3) + sin(u2 � u3)],

R4(k) = t + �t1 + t(cos u1 + cos u2 + cos u3),

R5(k) = t(sin u1 + sin u2 + sin u3).

(7)

Here u1 = k · a1, u2 = k · a2, and u3 = k · a3 with
a1 =

a

2 (0, 1, 1), a2 =
a

2 (1, 0, 1) and a3 =
a

2 (1, 1, 0) being the
primitive translation vectors. In the following, we set a = 1.
The alpha matrices ↵µ are given by the chiral representation:

↵ j =

"
� j 0
0 �� j

#
, ↵4 =

"
0 1
1 0

#
, ↵5 =

"
0 �i

i 0

#
, (8)

where j = 1, 2, 3. In the present basis, the time-reversal op-
erator and spatial inversion (parity) operator are given by
T = 1 ⌦ (�i�2)K (K is the complex conjugation operator)
and P = ⌧1 ⌦1, respectively. We have introduced the hopping
strength anisotropy �t1 due to the lattice distortion along the
[111] direction. Namely, we have set such that ti j = t + �t1
for the [111] direction, and ti j = t for the other three di-
rections. When �t1 = 0, the system is a semimetal, i.e., the
energy bands touch at the three points X

r = 2⇡(�rx, �ry, �rz)
(r = x, y, z). Finite �t1 opens a gap of 2|�t1| at the X

r points.
The Z2 invariant of the system is given by

(�1)⌫0 =
8Y

i=1

sgn

2
6666664t + �t1 + t

3X

p=1

cos
⇣
�i · ap

⌘
3
7777775 , (9)

where �i are the eight time-reversal invariant momenta:
(0, 0, 0), (2⇡, 0, 0), (0, 2⇡, 0), (0, 0, 2⇡), (⇡, ⇡, ⇡), (⇡, ⇡,�⇡),
(⇡,�⇡, ⇡), and (�⇡, ⇡, ⇡). We see that the system is a topologi-
cal insulator (normal insulator) when 0 < �t1 < 2t (�t1 < 0 or

2

L. Fu, C. L. Kane, E. J. Mele, PRL 98, 106803 (2007)

Γ M1 M2 M3 Γ

1;(111)

0

4

-4

E

Symmetry-enhanced points

Fermi level
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Low-energy effective action
‣ Low-energy phenomenology is mainly determined by            bands 
‣ Those modes around  are expressed by the effective action 

 

with Dirac electron  

• A small gap  can be introduced through symmetry breaking (e.g., lattice distortion)

k = Mr

S = ∫ d4x ∑
r=1,2,3

ψr [iγμ(∂μ − ieAμ) − δt] ψr

ψ ∼ (A ↑ , A ↓ , B ↑ , B ↓ )

δt

16

Γ M1 M2 M3 Γ

1;(111)

0

4

-4

E

Symmetry enhanced points 
small gap ∼ δt

Fermi level

Figure from Sekine, et al. ’14

J. Phys. Soc. Jpn. FULL PAPERS

When the strength U is intermediate, it has been shown that
the spin liquid phase emerges22–26 and pointed out the pos-
sibility of the fractional topological insulator phase.21 In an-
other model of a 2D topological insulator with on-site interac-
tion, the Bernevig-Hughes-Zhang-Hubbard model, the exis-
tence of the topological antiferromagnetic insulator phase has
been pointed out.27 On the other hand, in the case of three-
dimensions, the Fu-Kane-Mele model on the diamond lattice,
the 3D analog of the Kane-Mele model, is known as a model
for a 3D topological insulator.28, 29 What is the properties
of an interacting Fu-Kane-Mele model, the Fu-Kane-Mele-
Hubbard model? So far there has been no study on this model,
although interesting phenomena are expected to emerge.

In this paper, we focus on the topological magnetoelectric
response of the antiferromagnetic insulator phase in the ex-
tended Fu-Kane-Mele-Hubbard model on a diamond lattice
at half-filling, within the mean-field approximation. This pa-
per is organized as follows. In Sec. 2, the model we adopt
is explained. We take into account the on-site and nearest-
neighbor repulsive electron-electron interactions. In Sec. 3,
the mean-field phase diagram is presented. In Sec. 4, we ob-
tain analytically the value of ✓ in the antiferromagnetic insula-
tor phase. First we show that we can derive the Dirac Hamil-
tonian in the antiferromagnetic insulator phase. Then based
on the Fujikawa’s method,30, 31 we obtain the theta term as
a consequence of the chiral anomaly. In Sec. 5, we discuss
the realization of the dynamical axion field in our model. we
also discuss the relation between our antiferromagnetic insu-
lator phase and the so-called “Aoki phase”, a symmetry bro-
ken phase induced by interactions in lattice QCD.32

2. Model

Let us consider a 3D lattice model with electron correlation
and spin-orbit coupling. The model we adopt is the extended
Fu-Kane-Mele-Hubbard model on a diamond lattice at half-
filling, in which the Hamiltonian is given by H = H0 + Hint
with the non-interacting part

H0 =
X

hi, ji,�

ti jc
†

i�c j� + i
4�
a2

X

hhi, jii

c
†

i
� · (d1

i j
⇥ d2

i j
)c j, (4)

and the interaction part

Hint = U

X

i

ni"ni# +
X

hi, ji

Vi jnin j, (5)

where c
†

i� is an electron creation operator at a site i with
spin �(=", #), ni� = c

†

i�ci�, ni = ni" + ni#, and a is the lat-
tice constant of the fcc lattice. The first and second terms
of H0 represent the nearest-neighbor hopping and the next-
nearest-neighbor spin-orbit coupling, respectively. d1

i j
and d2

i j

are the two vectors which connect two sites i and j of the
same sublattice. They are given by two of the four nearest-
neighbor vectors, a

4 (1, 1, 1), a

4 (�1,�1, 1), a

4 (1,�1,�1), and
a

4 (�1, 1,�1), with proper signs (directions of the vectors).
� = (�1,�2,�3) are the Pauli matrices for the spin degree
of freedom. The first and second terms of Hint describe the
on-site and nearest-neighbor repulsive electron-electron inter-
actions, respectively. The lattice structure of a diamond lattice
is shown in Fig. 1(a).

It is convenient to express the non-interacting part H0 of
the Hamiltonian in terms of the 4⇥4 alpha (gamma) matri-

Fig. 1. (Color online) (a) A diamond lattice, which consists of two sub-
lattices (red and blue), and each sublattice forms a fcc lattice. (b) The first
Brillouin zone of a fcc lattice. Green circles represent the X points.

ces. The diamond lattice consists of two sublattices (A and
B), with each sublattice forming a fcc lattice. In such a case,
we can define the basis ck ⌘ [ckA", ckA#, ckB", ckB#]T where
the wave vector k is given by the points in the first Brillouin
zone of the fcc lattice [see Fig. 1(b)]. Then the single-particle
HamiltonianH0(k) [H0 ⌘

P
k c
†

kH0(k)ck] is written as28, 29

H0(k) =
5X

µ=1

Rµ(k)↵µ, (6)

where the coe�cients Rµ(k) are given by

R1(k) = �[sin u2 � sin u3 � sin(u2 � u1) + sin(u3 � u1)],

R2(k) = �[sin u3 � sin u1 � sin(u3 � u2) + sin(u1 � u2)],

R3(k) = �[sin u1 � sin u2 � sin(u1 � u3) + sin(u2 � u3)],

R4(k) = t + �t1 + t(cos u1 + cos u2 + cos u3),

R5(k) = t(sin u1 + sin u2 + sin u3).

(7)

Here u1 = k · a1, u2 = k · a2, and u3 = k · a3 with
a1 =

a

2 (0, 1, 1), a2 =
a

2 (1, 0, 1) and a3 =
a

2 (1, 1, 0) being the
primitive translation vectors. In the following, we set a = 1.
The alpha matrices ↵µ are given by the chiral representation:

↵ j =

"
� j 0
0 �� j

#
, ↵4 =

"
0 1
1 0

#
, ↵5 =

"
0 �i

i 0

#
, (8)

where j = 1, 2, 3. In the present basis, the time-reversal op-
erator and spatial inversion (parity) operator are given by
T = 1 ⌦ (�i�2)K (K is the complex conjugation operator)
and P = ⌧1 ⌦1, respectively. We have introduced the hopping
strength anisotropy �t1 due to the lattice distortion along the
[111] direction. Namely, we have set such that ti j = t + �t1
for the [111] direction, and ti j = t for the other three di-
rections. When �t1 = 0, the system is a semimetal, i.e., the
energy bands touch at the three points X

r = 2⇡(�rx, �ry, �rz)
(r = x, y, z). Finite �t1 opens a gap of 2|�t1| at the X

r points.
The Z2 invariant of the system is given by

(�1)⌫0 =
8Y

i=1

sgn

2
6666664t + �t1 + t

3X

p=1

cos
⇣
�i · ap

⌘
3
7777775 , (9)

where �i are the eight time-reversal invariant momenta:
(0, 0, 0), (2⇡, 0, 0), (0, 2⇡, 0), (0, 0, 2⇡), (⇡, ⇡, ⇡), (⇡, ⇡,�⇡),
(⇡,�⇡, ⇡), and (�⇡, ⇡, ⇡). We see that the system is a topologi-
cal insulator (normal insulator) when 0 < �t1 < 2t (�t1 < 0 or

2

A

B
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‣ Coulomb interaction makes it hard to fill 2 s in an orbital 
   : Hubbard interaction  

• In the half-filled materials, large  enforces , 

making the system a Mott insulator 

‣ In the large  limit, we obtain an effective spin-spin exchange interaction 

 

• Since , the system acquires an anti-ferromagnetic ordering

e−

H = − t ∑
⟨ℓ,m⟩

c†
ℓcm +U∑

ℓ

nℓ↑nℓ↓ HU

U nℓ↑ + nℓ↓ = 1

U

Heff ∼ Ht
1

HU
Ht =

t2

U ∑
⟨ℓ,m⟩

⃗S ℓ ⋅ ⃗S m

J = − t2/U < 0

...SA1 SB2SB1 SA2

Hubbard interaction and magnetic ordering
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Induced spin-electron interaction
‣ Define an anti-ferromagnetic (Néel) order parameter 

 

for sublattices  A & B 

‣ Apply the mean-field approximation to  

 

     

‣ This gives an axionic interaction btw  and Dirac s in the low energy 
    with  ,   

• It is axionic because the order parameter has opposite signs for s 

• Three Dirac s  couple to the corresponding 

⟨ ⃗S ℓ,A⟩ = − ⟨ ⃗S ℓ,B⟩ ≡ ⃗m

HU = U∑
ℓ

nℓ↑nℓ↓

HU ≃ U∑
ℓ

(⟨nℓ↑⟩nℓ↓ + ⟨nℓ↓⟩nℓ↑ − ⟨nℓ↑⟩⟨nℓ↓⟩ − ⟨c†
ℓ↑cℓ↓⟩c†

ℓ↓cℓ↑ − ⟨c†
ℓ↓cℓ↑⟩c†

ℓ↑cℓ↓ + ⟨c†
ℓ↑cℓ↓⟩⟨c†

ℓ↓cℓ↑⟩)

= U∑
ℓ

( 1
2

+ ⟨Sz
ℓ⟩) nℓ↓ + ( 1

2
− ⟨Sz

ℓ⟩) nℓ↑ − ⟨S+
ℓ ⟩c†

ℓ↓cℓ↑ − ⟨S−
ℓ ⟩c†

ℓ↑cℓ↓ + ⋯

⃗m e−

S = ∫ d4x ∑
r=1,2,3

ψr [iγμ(∂μ − ieAμ) − δt −iγ5Umr ] ψr γ5 = (1 0
0 −1) ψ ∼ (A ↑ , A ↓ , B ↑ , B ↓ )

A /B e−

e− ψr (r = 1,2,3) mr
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...SA1 SB2SB1 SA2

Sa
ℓ =

1
2 (c†

ℓ↑ c†
ℓ↓) σa (cℓ↑

cℓ↓)
J. Phys. Soc. Jpn. FULL PAPERS

When the strength U is intermediate, it has been shown that
the spin liquid phase emerges22–26 and pointed out the pos-
sibility of the fractional topological insulator phase.21 In an-
other model of a 2D topological insulator with on-site interac-
tion, the Bernevig-Hughes-Zhang-Hubbard model, the exis-
tence of the topological antiferromagnetic insulator phase has
been pointed out.27 On the other hand, in the case of three-
dimensions, the Fu-Kane-Mele model on the diamond lattice,
the 3D analog of the Kane-Mele model, is known as a model
for a 3D topological insulator.28, 29 What is the properties
of an interacting Fu-Kane-Mele model, the Fu-Kane-Mele-
Hubbard model? So far there has been no study on this model,
although interesting phenomena are expected to emerge.

In this paper, we focus on the topological magnetoelectric
response of the antiferromagnetic insulator phase in the ex-
tended Fu-Kane-Mele-Hubbard model on a diamond lattice
at half-filling, within the mean-field approximation. This pa-
per is organized as follows. In Sec. 2, the model we adopt
is explained. We take into account the on-site and nearest-
neighbor repulsive electron-electron interactions. In Sec. 3,
the mean-field phase diagram is presented. In Sec. 4, we ob-
tain analytically the value of ✓ in the antiferromagnetic insula-
tor phase. First we show that we can derive the Dirac Hamil-
tonian in the antiferromagnetic insulator phase. Then based
on the Fujikawa’s method,30, 31 we obtain the theta term as
a consequence of the chiral anomaly. In Sec. 5, we discuss
the realization of the dynamical axion field in our model. we
also discuss the relation between our antiferromagnetic insu-
lator phase and the so-called “Aoki phase”, a symmetry bro-
ken phase induced by interactions in lattice QCD.32

2. Model

Let us consider a 3D lattice model with electron correlation
and spin-orbit coupling. The model we adopt is the extended
Fu-Kane-Mele-Hubbard model on a diamond lattice at half-
filling, in which the Hamiltonian is given by H = H0 + Hint
with the non-interacting part

H0 =
X

hi, ji,�

ti jc
†

i�c j� + i
4�
a2

X

hhi, jii

c
†

i
� · (d1

i j
⇥ d2

i j
)c j, (4)

and the interaction part

Hint = U

X

i

ni"ni# +
X

hi, ji

Vi jnin j, (5)

where c
†

i� is an electron creation operator at a site i with
spin �(=", #), ni� = c

†

i�ci�, ni = ni" + ni#, and a is the lat-
tice constant of the fcc lattice. The first and second terms
of H0 represent the nearest-neighbor hopping and the next-
nearest-neighbor spin-orbit coupling, respectively. d1

i j
and d2

i j

are the two vectors which connect two sites i and j of the
same sublattice. They are given by two of the four nearest-
neighbor vectors, a

4 (1, 1, 1), a

4 (�1,�1, 1), a

4 (1,�1,�1), and
a

4 (�1, 1,�1), with proper signs (directions of the vectors).
� = (�1,�2,�3) are the Pauli matrices for the spin degree
of freedom. The first and second terms of Hint describe the
on-site and nearest-neighbor repulsive electron-electron inter-
actions, respectively. The lattice structure of a diamond lattice
is shown in Fig. 1(a).

It is convenient to express the non-interacting part H0 of
the Hamiltonian in terms of the 4⇥4 alpha (gamma) matri-

Fig. 1. (Color online) (a) A diamond lattice, which consists of two sub-
lattices (red and blue), and each sublattice forms a fcc lattice. (b) The first
Brillouin zone of a fcc lattice. Green circles represent the X points.

ces. The diamond lattice consists of two sublattices (A and
B), with each sublattice forming a fcc lattice. In such a case,
we can define the basis ck ⌘ [ckA", ckA#, ckB", ckB#]T where
the wave vector k is given by the points in the first Brillouin
zone of the fcc lattice [see Fig. 1(b)]. Then the single-particle
HamiltonianH0(k) [H0 ⌘

P
k c
†

kH0(k)ck] is written as28, 29

H0(k) =
5X

µ=1

Rµ(k)↵µ, (6)

where the coe�cients Rµ(k) are given by

R1(k) = �[sin u2 � sin u3 � sin(u2 � u1) + sin(u3 � u1)],

R2(k) = �[sin u3 � sin u1 � sin(u3 � u2) + sin(u1 � u2)],

R3(k) = �[sin u1 � sin u2 � sin(u1 � u3) + sin(u2 � u3)],

R4(k) = t + �t1 + t(cos u1 + cos u2 + cos u3),

R5(k) = t(sin u1 + sin u2 + sin u3).

(7)

Here u1 = k · a1, u2 = k · a2, and u3 = k · a3 with
a1 =

a

2 (0, 1, 1), a2 =
a

2 (1, 0, 1) and a3 =
a

2 (1, 1, 0) being the
primitive translation vectors. In the following, we set a = 1.
The alpha matrices ↵µ are given by the chiral representation:

↵ j =

"
� j 0
0 �� j

#
, ↵4 =

"
0 1
1 0

#
, ↵5 =

"
0 �i

i 0

#
, (8)

where j = 1, 2, 3. In the present basis, the time-reversal op-
erator and spatial inversion (parity) operator are given by
T = 1 ⌦ (�i�2)K (K is the complex conjugation operator)
and P = ⌧1 ⌦1, respectively. We have introduced the hopping
strength anisotropy �t1 due to the lattice distortion along the
[111] direction. Namely, we have set such that ti j = t + �t1
for the [111] direction, and ti j = t for the other three di-
rections. When �t1 = 0, the system is a semimetal, i.e., the
energy bands touch at the three points X

r = 2⇡(�rx, �ry, �rz)
(r = x, y, z). Finite �t1 opens a gap of 2|�t1| at the X

r points.
The Z2 invariant of the system is given by

(�1)⌫0 =
8Y

i=1

sgn

2
6666664t + �t1 + t

3X

p=1

cos
⇣
�i · ap

⌘
3
7777775 , (9)

where �i are the eight time-reversal invariant momenta:
(0, 0, 0), (2⇡, 0, 0), (0, 2⇡, 0), (0, 0, 2⇡), (⇡, ⇡, ⇡), (⇡, ⇡,�⇡),
(⇡,�⇡, ⇡), and (�⇡, ⇡, ⇡). We see that the system is a topologi-
cal insulator (normal insulator) when 0 < �t1 < 2t (�t1 < 0 or

2

A. Sekine, K. Nomura ’14
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 phenomenologyE ≪ δt
‣  phenomenology after integrating out Dirac s 

 

‣ Also, the dynamical fluctuation  gives the 
dynamical axion mode  

 

 

• This can also be rewritten as a linear combination of magnons  

 

E ≪ δt e−

Sθ =
αe

4π ∫ d4x θFμν F̃ μν θ ≡ π + ∑
r

θr = π + ∑
r

tan−1 ( Umr

δt )

⃗m → ⃗m + δ ⃗m

δθ

ΔSθ =
αe

4π ∫ d4x δθ Fμν F̃ μν

δθ ≃
1
4 ∑

r

U/δt
1 + U2m2

r /δt2
δmr

α̃0, β̃0

δθ ≃
s

2N
(u0 − v0)[D*α̃†

0 − Dβ̃†
0 + h . c . ]
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Axion to axion conversion
‣ Under background  , axion oscillation generates an effective electric field 

  with   

• Uniform classical field same as  

‣  excites an axion = a linear combination of magnons 

• Resonance at  

•  : Intrinsic gap 

•  : AF magnon with spin ,  

•  : AF magnon with spin , 

⃗B 0

⃗E a( ⃗x , t) ≃ E0 ̂z cos(mat + δ) E0 = −
1
ϵ

gaγγa0B0

⃗B a

⃗E a

ma ≃ ωint ± ωL

ωint

α̃0 ↑ ω = ωint + ωL

β̃0 ↓ ω = ωint − ωL

20

⃗B 0
⃗B 0

a
γ

δθ
gaγγ

B0 = 0ω

k

B0 ≠ 0

ω = ωk ± ωLω0ωint
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Sensitivity on axion DM
‣ Illustration of possible sensitivity curves 

‣ “Plausible” choice of parameters 
•  

•  

• etc. 

‣ A different model of axionic material as 
the TOORAD experiment

ωint = 1 meV

B0 ∼ 𝒪(1) T

21

S. Chigusa, T. Moroi, K. Nakayama [2102.06179]

David J. E. Marsh+ ’19, J. Schütte-Engel+ ’21
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Conclusion
‣ Spin dynamics in materials give us various approaches to axion DM search!

22

axion magnon NV center Nuclear spin

Target mass
(depends on anisotropy) (depends on anisotropy)

Approach Resonance 
scan external　　.

Resonance 
scan external　　.

Broadband 
can also focus on fixed    .

Resonance 
scan external　　.

DM coupling
no    supression

target materials axionic materials 
ex) AF topo. insulator

magnetic material 
ex) YIG

(pink) diamond Superfluid      .  

∼ 𝒪(100) meV

gaγγ

∼ 𝒪(100) meV

B0 B0

gaee gaee gaNN

≲ 0.1 meV

ma

3He
MnCO3

1 μeV ∼

B0

va
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Conclusion
‣ Spin dynamics in materials give us various approaches to axion DM search!

23

axion magnon NV center Nuclear spin

Target mass
(depends on anisotropy) (depends on anisotropy)

Approach Resonance 
scan external　　.

Resonance 
scan external　　.

Broadband 
can also focus on fixed    .

Resonance 
scan external　　.

DM coupling
no    supression

target materials axionic materials 
ex) AF topo. insulator

magnetic material 
ex) YIG

(pink) diamond Superfluid      .  

∼ 𝒪(100) meV

gaγγ

∼ 𝒪(100) meV

B0 B0

gaee gaee gaNN

≲ 0.1 meV

ma

3He
MnCO3

1 μeV ∼

B0

vaThank you!
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The NV center sensitivity on axion DM

‣ Sensitivity on  for a broad mass range gaee ma ≲ 10−4 eV

25

SC+ [2302.12756]
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Relationship w/ topology

26

✓Normal / Topological insulators have different topologies 
- Topological invariant  is evaluated w/ berry connection  

- Time reversal symmetry forces  to be one of below 
•  （normal insulator） 
•  （topological insulator） 
- SPT phase 
= “symmetry protected topological phase”

θ

θ

θ = 0

θ = π

𝒜αβ
i = − i⟨uα

k |
∂

∂ki
|uβ

k ⟩

Berry connection Bloch states↔energy eigenstates

θ ≡
1

4π ∫BZ
d3k ϵijk Tr [𝒜i∂j𝒜k + i

2
3

𝒜i𝒜j𝒜k]
Brillouin zone

= No continuous deformation

T-symmetric 
param space

T-breaking

θ = 0 θ = π
“topological” 
phase transition

no phase transition

θ ∈ [0,2π)
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 is axion termθ

27

S =
α
4π ∫ dtd3x θ Fμν F̃ μν ; F̃ μν =

1
2

ϵμνρσFρσ

= 4 ⃗E ⋅ ⃗B

-   is “static” axion term 
-  induces electric polarization  

-  induces magnetization 

θ

⃗B ⃗P ∝ θ ⃗B

⃗E ⃗M ∝ θ ⃗E

✓Topological EM response 

✓Rich phenomenology like 
- Faraday rotation 
　rotation of polarization plane 
of linearly polarized photon

cf. cosmological birefringence

V. Dziom+  Nat. Commun. 8, 15197 (2017)

- Image monopole effect
X. Qi+  Science 323, 1184 (2009)

Emergence of magnetic fields 
 as if “image monopole” exists
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Order estimate of physical parameters
 

 

    

ℒint =
α
2π

1
fCM

δθ FF̃

fCM ∼ ((u0 − v0) |D | ω0Vunit)
−1

∼ 200 keV ( 1
u0 − v0 ) ( 1

|D | ) ( 1 meV
ω0 )

1/2

( (5 Å)3

Vunit )
1/2

28

D = ∑
r

U/δt
1 + U2m2

r δt2
(Or1 − iOr2) ∼ 𝒪(1)

when U ∼ δt


