
Quantum simulation of parton shower 
with kinematics

So Chigusa (LBNL/UC Berkeley) 
with C. W. Bauer and M. Yamazaki 
PLB 834 (2022) 137466 [arXiv: 2204.12500] 
PRA 109 (2024) 3, 032432 [arXiv: 2310.19881]

|0⟩

|0⟩

|qnI+j+1⟩ R(Φ)

|qk⟩ U(µ2
χχ) U(µ2

χA) U†(µ2
χχ) U†(µ2

χA)

|e⟩ RY (θ
j,χ
0 ) RY (θ

j,χ
1 ) R(j)

Y (θj,A)

q̃2j (k) set

A/f set f A f f A f A A

z ĝj,overk (ck; z)

k ĝj,overk,tot (c)

hist set e
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Quantum computation: NISQ era

2
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Overview

3

The fact 
‣ Parton shower is a traditional algorithm to simulate 

high-energy multi-emission processes based on 
a classical probability distribution 

Problem 
‣ A non-trivial “flavor” structure could induce 

quantum interference effects, which cannot be 
tracked by the classical parton shower algorithm 

What we did 
1. Constructed a quantum algorithm to simulate multi-emission processes, taking into 

account quantum interference and kinematical effects 
2. Demonstrated the phenomenological implications based on a toy model

Höche “Introduction to parton-shower event generators”

ZT /γ ZL / h
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Table of contents
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‣ A brief review of the (classical) parton shower 
• How it works 
• Why quantum interference could be important 
• Some analytical results 
• Phenomenological implications 

‣ Quantum Veto Parton Shower (QVPS) algorithm 
• Bottom-up demonstration of construction ideas 
• How to incorporate kinematic information 
• Implication from the quantum interference effect 

‣ Future directions
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Large logarithms

5

‣ Soft/collinear singularities lead to an enhancement of emission processes 
• Ex)  production 

  and   

‣ The expansion parameter becomes larger  -   or 

qq̄ + g

dσqq̄g

d cos θ dx
≃ σqq̄ ∑

f=q,q̄
CF

αs

2π
2

sin2 θf

1 + (1 − x)2

x
σqq̄g ∝ σqq̄

αs

2π
ln2 ( E2

0
μ2IR )

α → α ln α ln2

E0
Eg = xE0

θq̄

θq
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Resummation of large logarithms

6

‣ Emissions are not necessarily suppressions at high energy scales 

• Collinear emission @ LHC:                          

• Soft & collinear  @ muon collider:              

• Collinear emission from heavy DM:             

‣ Resummation of large logs needed!   * The leading logarithms (LL), 

αs(MZ)
2π

ln ( E2
0

Λ2
QCD ) ∼ 30 % ⇔ E0 ∼ 0.6 TeV

γ
α
2π

ln2 ( E2
0

m2μ ) ∼ 30 % ⇔ E0 ∼ 1 TeV

α2(MZ)
2π

ln ( E2
0

m2
Z ) ∼ 30 % ⇔ E0 ∼ 0.5 EeV

∑n (α ln)n

+ + +⋯

C. W. Bauer, et al. [2007.15001]
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‣ LL contributions 
 

‣ Beyond LL  
 

• cf) Virtuality ordering                                                      cf) Angular ordering

∑
n

(α ln)n + ⋯

∑
n

αn lnn−1 + ⋯

Coherence

7

Only ladder-type diagrams with 1 → 2 splittings contribute at the LL

Chang+ ’70, Gribov+ ’72, Dokshitzer ’77 Marchesini+ ’84, ’88
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Classical probabilistic interpretation

8

‣ The relationship among cross sections 
• Ex)  production 

  with  virtuality  

‣ Can be interpreted as classical “splitting probabilities” 

qq̄ + g

dσqq̄g

dt dx
≃ σqq̄ ∑

f=q,q̄

αs

2π
1
tq

CF
1 + (1 − x)2

x
tq ∝ sin2 θq

2

d𝒫q→gq = d𝒫q̄→gq̄ ≃ αs

2π
dt
t

CF
1 + (1 − x)2

x
dx

E0
Eg = xE0

θq̄

θq
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General splitting and splitting functions

9

‣ General formula of the splitting probability 

 

‣ Splitting functions in QCD 

• cf) helicity effects in EW theory                          cf) mass effects in dark 

d𝒫i→jℓ ≃ α(t, x)
2π

dt
t

Pi→jℓ(x)dx

U(1)

i
j

ℓ

Pq→gq = CF
1 + (1 − x)2

x
Pq→qg = CF

1 + x2

1 − x

Pg→gg = 2CA
(1 − x(1 − x))2

x(1 − x)
Pg→qq̄ = TRx2(1 − x)2

Chen+ [1807.00530]Chen+ [1611.00788]
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Classical parton shower

10

‣ Monte Carlo simulation to determine the multi-emission cross sections based on 

  and   

‣ Inevitable for high-E simulation 
• Pythia8 
• Herwig 
• Sherpa 
• etc… 

‣ Unitarity ensures that the inclusive cross section is unchanged 
• e.g.,  

d𝒫i→jℓ ≃ Ri→jℓ(t) dt Ri→jℓ(t) ≡ 1
t ∫

xmax(t)

xmin(t)
dx

α(t, x)
2π

Pi→jℓ(x)

σLO
qq̄ = σLO+LL

qq̄ + σLO+LL
qq̄g + σLO+LL

qq̄gg + σLO+LL
qq̄qq̄ + ⋯

t = E2
0 t = μ2

IR

t1, x1

t2, x2
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Analytic results for soft emissions

11

‣ Consider soft & collinear gluon emissions from a high-energy quark 

‣ A Poisson distribution with an average λ ∝ α ln2

No emission probability for a given range     

 

  with   

 

    probability of  gluons 

Δ(t0, t)

d
dt

Δ(t0, t) = − R(t)Δ(t0, t) ⇒ Δ(t0, t1) = exp (−∫
t1

t0
dt R(t))

p0 = Δ(μ2
IR, E2

0) ≡ e−λ λ ≃ CF
αs

2π
ln2 E2

0
μ2IR

p1 ≃ ∫
tmax

tmin

dt Δ(tmin, t)R(t)Δ(t, tmax) = λe−λ

pn ≃ 1
n! λne−λ ⋯⋯ n
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Im
i k j k0 i

=
X

k,k0 i k j
⇥

0

BBB@ i k0 j

1

CCCA

⇤

Quantum interference in parton shower

12

‣ A loophole in the discussion so far 

‣ QCD is “trivial” in this context 
• Flavor diagonal • Color information is preserved

A non-trivial flavor structure makes interference effects important at the LL-level

u u u
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Models with quantum interference

13

‣ EW shower 
• Classical treatment 

‣ Simple toy model:  fermions charged under dark  

•  

‣ Classical parton shower simulation can not take into account quantum interference 
effects in these models, but they can be phenomenologically important

Nf U(1)

ℒdark = ∑
i

χ̄i(i∂ − mχi
)χi + ∑

i,j
igij χ̄iA′ χj − 1

4 F′ μνF′ μν − 1
2 m2

A′ 
A′ μA′ μ

J. Chen, T. Han, B. Tweedie [1611.00788]
Z. Nagy, E. Soper [0706.0017]

ZT /� ZL/h
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‣ A simple toy model with  flavors of fermions 

  with    ;   

‣ For  gauge boson processes 

‣ Simple rescaling  allows us to include the interference effects

Nf

ℒint = iχ̄GA′ χ χ =
χ1
⋮

χNf

G = (
g ⋯ g
⋮ ⋮
g ⋯ g )

n

pn

pn−1
→ Nf

pn

pn−1

���������

X

j
j1 j2 · · ·

· · ·
���������

2

=
X

j

���������
j1 j2 · · ·

· · ·
���������

2

+ (interference)

Analytic treatment of interference effects

14

 termsN2(n−1)
f  termsNn−1

f
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Distribution of the number of emissions 

15
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From classical to quantum simulation

16

‣ The interference effect is a fundamental feature of the quantum mechanics 
‣ Can we naturally include this effect in the numerical simulation by using 

superposition states in the quantum simulation?



2024/5/28  So Chigusa ＠ KIAS QUC-AIHEP/ 38

Simplest two-flavor example

17

|si Ry(�)

|ei Ry(✓a) Ry(✓b)
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‣  stores a quantum state of a parton |s⟩

|s⟩ =
cos ϕ

2 −sin ϕ
2

sin ϕ
2 cos ϕ

2
(1

0) = cos ϕ
2 |a⟩ + sin ϕ

2 |b⟩

|si Ry(�)

|ei Ry(✓a) Ry(✓b)

Simplest two-flavor example

18
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|si Ry(�)

|ei Ry(✓a) Ry(✓b)

Simplest two-flavor example

19

‣  preserves whether the emission occurs or not 

 

‣ Emission probability from    -  

|e⟩

|ψ⟩ ≡ |s⟩ |e⟩ = cos ϕ
2 |a⟩(cos θa

2 |0e⟩ + sin θa

2 |1e⟩) + sin ϕ
2 |b⟩(cos θb

2 |0e⟩ + sin θb

2 |1e⟩)
|q⟩ (q = a, b) pq = sin2 θq

2
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|si Ry(�)

|ei Ry(✓a) Ry(✓b)

Simplest two-flavor example

20

‣ Measurement affects both the  and  states 

 

     

     

|s⟩ |e⟩

|ψ⟩ ≡ |s⟩ |e⟩ = cos ϕ
2 |a⟩(cos θa

2 |0e⟩ + sin θa

2 |1e⟩) + sin ϕ
2 |b⟩(cos θb

2 |0e⟩ + sin θb

2 |1e⟩)
⇒ |ψ⟩ ∝ (cos ϕ

2 cos θa

2 |a⟩ + sin ϕ
2 cos θb

2 |b⟩) |0e⟩ (e = 0)

⇒ |ψ⟩ ∝ (cos ϕ
2 sin θa

2 |a⟩ + sin ϕ
2 sin θb

2 |b⟩) |1e⟩ (e = 1)
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Towards sampling: veto method

21

‣ We judge if emission occurs in  and sample x according to 

  and   

‣ The veto method for sampling based on a complicated distribution  
1) Prepare over-estimated quantities 

  with   

 
2) Sample  according to  

Solve  

3) Veto (= conclude no emission) if 
  or  

tj < t < tj + Δt

Δ𝒫 ≃ R(tj) Δt R(tj) ≃ 1
tj ∫

xmax(tj)

xmin(tj)
dx

α(tj, x)
2π

P(x)

f(x)

f over(x) ≥ f(x) ∫ xover
max

xover
min

dx f over(x) = 1

[xover
min , xover

max] ⊇ [xmin, xmax]
xj f over(x)

∫ xj

xover
min

dx′ f over(x′ ) = r ∈ [0,1)

xj ∉ [xmin, xmax] f(xj) / f over(xj) < r′ ∈ [0,1) xover
min

xmin xmax = xover
max

f(xj)

fover(xj)

xj 1 2 3 4 5

1

r

xj

x

R x
dx0 fover(x0)
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|si

|ei RY (✓a) RY (✓b)

x fover(x)

Two-flavor simulation with sampling

22
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|si

|ei RY (✓a) RY (✓b)

x fover(x)

Two-flavor simulation with sampling

23

‣ Sampling of  according to the over-estimated quantities 

‣ State-dependent veto with    for    

x

sin2 θq

2 =
fq(xj)

fover(xj)
|s⟩ = |q⟩ (q = 0,1)
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|si

|ei RY (✓a) RY (✓b)

x fover(x)

Two-flavor simulation with sampling

24

‣ Sampling of  according to the over-estimated quantities 

‣ State-dependent veto with    for    

x

sin2 θq

2 =
fq(xj)

fover(xj)
|s⟩ = |q⟩ (q = a, b)
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Two-flavor simulation with sampling

25

‣ Sampling of  according to the over-estimated quantities 

‣ State-dependent veto with    for    

x

sin2 θq

2 =
fq(xj)

fover(xj)
|s⟩ = |q⟩ (q = a, b)

Veto procedure allows to use state-independent  for sampling 
as far as 

fover(x)
fover(x) ≥ fa(x), fb(x)

|si

|ei RY (✓a) RY (✓b)

x fover(x)
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Numerical simulation by Qiskit

26

  ,    and   fa(z) = 1
2 z fb(z) = 3

4 z2 |s⟩ = 1
2

( |a⟩ + |b⟩)
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Numerical simulation by Qiskit

27

‣  after meas. of  

‣ Analytically / Numerically checked quantum state evolution is OK 
up to   -  Require  , 

|s⟩ = α0 |a⟩ + α1 |b⟩ |e⟩

O (Δ𝒫2
q) Δ𝒫a Δ𝒫b ≪ 1
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‣ -step simulation starting from  

‣ Discretize  to -steps as  

‣ “Classical” anticipation 
 

(N = 2) |s⟩ = cϕ |a⟩ + sϕ |b⟩

t ∈ [μ2
IR, E2

0] N t0 = E2
0 > t1 > t2 > ⋯ > tN = μ2

IR

p(N=1)
e=1 = c2

ϕΔ𝒫a + s2
ϕΔ𝒫b

p(N=2)
e1=e2=1 = (p(N=1)

e=1 )
2

|si Ry(�)

|e1i Ry(✓a) Ry(✓b)

|e2i Ry(✓a) Ry(✓b)

Quantum interference effect

28

‣ Quantum result 
 p(N=1)

e=1 = c2
ϕΔ𝒫a + s2

ϕΔ𝒫b

p(N=2)
e1=e2=1 = c2

ϕΔ𝒫2
a + s2

ϕΔ𝒫2
b ≠ (p(N=1)

e=1 )
2
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‣ Discretize  to -steps as  

‣ Need mid-circuit measurement to track the preceding dynamics with full kinematics 

1) Add new parton 
2) Vituality jump

t ∈ [μ2
IR, E2

0] N t0 = E2
0 > t1 > t2 > ⋯ > tN = μ2

IR

|0i |0i

|si

|ei R(j)
Y (✓a) R(j)

Y (✓b) R(j+1)
Y (✓a) R(j+1)

Y (✓b)

x fover(xj) fover(xj+1)

e ej ej+1

Multi-step simulation with kinematics

29
x2tj

(1 − x)2tj

tj, x
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Quantum Veto Parton Shower

30

-th stepj
|0⟩

|0⟩

|qnI+j+1⟩ R(Φ) U†(µ2
χχ)

|qk⟩ U(µ2
χχ) U†(µ2

χχ)

|e⟩ RY (θ
j,χ
0 ) RY (θ

j,χ
1 ) R(j)

Y (θj,A)

q̃2j (k) set

A/f set f f f A A f A

z ĝj,overk (ck; z)

k ĝj,overk,tot (c)

hist set e
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Quantum Veto Parton Shower

31

‣ Particle register  for each parton  stores fermion flavors in  qubits 

‣ Virtuality of each patron , whether it is a fermion / gauge boson, stored in classical bits 

‣ Emission history is also stored in classical bits

|qk⟩ k ⌈log2 Nf⌉

q̃2
j (k)

-th stepj
|0⟩

|0⟩

|qnI+j+1⟩ R(Φ) U†(µ2
χχ)

|qk⟩ U(µ2
χχ) U†(µ2

χχ)

|e⟩ RY (θ
j,χ
0 ) RY (θ

j,χ
1 ) R(j)

Y (θj,A)

q̃2j (k) set

A/f set f f f A A f A

z ĝj,overk (ck; z)

k ĝj,overk,tot (c)

hist set e
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Quantum Veto Parton Shower

32

‣ Sampling of  (a candidate parton that undergoes emission) and  (energy fraction) 
• Sampling of  can be done classically again thanks to the over-estimated quantities 
• Candidate splitting topology and kinematics is fixed

k z

k

-th stepj
|0⟩

|0⟩

|qnI+j+1⟩ R(Φ) U†(µ2
χχ)

|qk⟩ U(µ2
χχ) U†(µ2

χχ)

|e⟩ RY (θ
j,χ
0 ) RY (θ

j,χ
1 ) R(j)

Y (θj,A)

q̃2j (k) set

A/f set f f f A A f A

z ĝj,overk (ck; z)

k ĝj,overk,tot (c)

hist set e
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Quantum Veto Parton Shower

33

‣ Basis rotation of fermion (if necessary) 
• Due to the RGE flow, the rotation angle is scale/kinematics-dependent 
• Suitable choice of the RG scale is process dependent

mass basis |0⟩, |1⟩ flavor basis |a⟩, |b⟩-th stepj

Herwig++ Physics and Manual [0803.0883]

|0⟩

|0⟩

|qnI+j+1⟩ R(Φ) U†(µ2
χχ)

|qk⟩ U(µ2
χχ) U†(µ2

χχ)

|e⟩ RY (θ
j,χ
0 ) RY (θ

j,χ
1 ) R(j)

Y (θj,A)

q̃2j (k) set

A/f set f f f A A f A

z ĝj,overk (ck; z)

k ĝj,overk,tot (c)

hist set e
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Quantum Veto Parton Shower

34

‣ Veto and determine whether the emission occurs through the mid-circuit measurement

-th stepj
|0⟩

|0⟩

|qnI+j+1⟩ R(Φ) U†(µ2
χχ)

|qk⟩ U(µ2
χχ) U†(µ2

χχ)

|e⟩ RY (θ
j,χ
0 ) RY (θ

j,χ
1 ) R(j)

Y (θj,A)

q̃2j (k) set

A/f set f f f A A f A

z ĝj,overk (ck; z)

k ĝj,overk,tot (c)

hist set e
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‣ If emission occurs, state update is necessary 
•  = fermion, add a new gauge boson 

• gauge boson, generate an entangled state  = 

k

k = |qk⟩ |qnew⟩ 1
α2a + α2

b
(αa |a⟩ |a⟩ + αb |b⟩ |b⟩)

Quantum Veto Parton Shower

35

-th stepj
|0⟩

|0⟩

|qnI+j+1⟩ R(Φ) U†(µ2
χχ)

|qk⟩ U(µ2
χχ) U†(µ2

χχ)

|e⟩ RY (θ
j,χ
0 ) RY (θ

j,χ
1 ) R(j)

Y (θj,A)

q̃2j (k) set

A/f set f f f A A f A

z ĝj,overk (ck; z)

k ĝj,overk,tot (c)

hist set e
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Numerical results of QVPS

36

‣ Summary of the setup 

‣ Some analytic result 

p2(n) = ( Na(n) − Nb(n))
2

2 (Na(n) + Nb(n))

     

       

  ( ) 

|s⟩ = |1⟩ ≡ 1
2

( |a⟩ + |b⟩)

αf(μ) =
α0

f

β0 ln(μ2/Λ2
D) (αa

0 = 0.5, αb
0 = 2)

β0 =
33 − 2Nf

4π
Nf = 2
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‣ Construct more efficient algorithms 
•  ,  enforces fine mesh of  
• Directly sampling  with veto 
• Gate cost  

‣ Treatment of soft interference 
• Global entanglement 
• Quantum treatment of history 

‣ Next-to-leading logarithms 

‣ Noise mitigation 

• Quantum resources required 

• Emission history in a qubit register

Δ𝒫a Δ𝒫b ≪ 1 t

t

O(N) → O (⟨n⟩)

Future directions

37

Register Purpose 2 flavors
|qi Particle state N + nI

|ei Did emission happen? 1

Element Purpose Gate Cost
U(µ2) Flavor rotation 2N
RY (✓) Emission 4N
R(�) Particle update 2N

2

show that a classical MCMC is not able to capture the
important quantum interference e↵ects in this model, and
that a full classical calculation scales exponentially with
the number of steps1. The proposed quantum algorithm
will be able to sample from the full probability distribu-
tion in polynomial time.

To begin, consider a simple quantum field theory, with
two types of fermion fields, f1 and f2, interacting with
one scalar boson � governed by the following Lagrangian:

L =f̄1(i/@ +m1)f1 + f̄2(i/@ +m2)f2 + (@µ�)
2

+ g1f̄1f1�+ g2f̄2f2�+ g12

⇥
f̄1f2 + f̄2f1

⇤
� . (1)

The first three terms in Eq. 1 describe the kinematics
of the fermions and scalar while the latter three terms
govern their interactions. In particular, the collinear dy-
namics of the theory are that the fermions can radiate
scalars (fi ! fj�) and scalars can split into fermion
pairs (� ! fif̄j). These couplings of fermions to scalar
bosons occur in the Higgs sector of the SM, and it has
been demonstrated that the final state collinear radia-
tion at high energy can be written in terms of a parton
shower [23, 29]. This model can contain important quan-
tum interference e↵ects when all couplings are non-zero,
since the unobserved intermediate state of the fermions
can be a superposition of fi for i 2 {1, 2}.

In the limit g12 ! 0 one can derive an e�cient MCMC
method for calculating high-multiplicity cross sections.
This is performed by introducing four splitting functions,
two for a fermion radiating a scalar (Pi!i�(✓) = g

2
i P̂f (✓))

and two for the scalar splitting into fermions (P�!ii(✓) =

g
2
i P̂�(✓)), where ✓ is the scale at which the splitting oc-

curs and P̂ (✓) encodes the energy scale-dependence of the
emission probability. There are many formally equivalent
definitions of the scale; here we use a common choice: the
opening angle of the emission with respect to the emitter.
In addition to the splitting functions, another important
quantity is the no-branching probability (Sudakov fac-
tor):

�i,k(✓1, ✓2) = exp

"
�g

2
i

Z ✓2

✓1

d✓0P̂k(✓
0)

#
. (2)

The Sudakov factor encapsulates the virtual (and unre-
solved real) contributions and is responsible for the re-
organization of the perturbation series (‘resummation’)
mentioned above. The Sudakov factor and splitting func-
tion satisfy the unitarity relation

�i,k(✓1, ✓2) + g
2
i

Z ✓2

✓1

d✓ P̂k(✓)�i,k(✓1, ✓) = 1 . (3)

1 There are e�cient algorithms to account for spin correlations in
quantum chromodynamics [24–27], but these do not apply to our
model or more generally to any model such as SU(2) where the
emission probability depends on the spin [28].

A classical parton shower would then e�ciently sample
from the cross section using a Markov Chain algorithm
by generating one emission at a time, conditioned on the
last emission. In particular, at a given step n in ✓, there
are at most n particles and the probability that none of
them radiate or split is

QN
j=1 �ij ,kj . If something does

happen at a given step, the probabilities are proportional
to the appropriate splitting function.
When g12 > 0, there are now multiple histories with

unmeasured intermediate fermion types which contribute
to the same final state. Therefore, the above MCMC is
invalid because one must include all possible histories and
cannot condition on a given state. Including all of the in-
terference e↵ects requires accounting for all histories at
the amplitude level and only computing probabilities at
the end of the evolution. When the g12 ⌧ 1, the evo-
lution is dominated by a single emission, which can be
properly treated using a density matrix formalism [23],
where each splitting function is represented through a
splitting matrix. For example, the fermion splitting ma-
trix is Pi!j�(✓) |fii hfj | (outer product of a ket and bra
gives a matrix). When there is more than one emission
during the evolution, this matrix formalism is insu�cient
and one must compute the full amplitude for which there
are O(2N ) possible histories [see App. A].
We propose an e�cient solution by keeping track of

amplitudes and not probabilities using quantum com-
puter. A quantum circuit implementing the quantum
final state radiation algorithm for one of N steps is given
by the following diagram:

|pi / R
(m) p p U

(m)
p R

(m)†

|hi / Uh h

|ei U
(m)
e e

|n�i /

Ucount

n�

Uh|nai / na

|nbi / nb

The circuit calls for six registers, which are are detailed
in the App. A and summarized in Tables I and II. The
initial state of |pi consists of nI particles (which can be
fermions or bosons) in the f1/2 basis. One starts by ro-
tating this initial particle state from the f1/2 basis to a

diagonal fa/b basis, using a simple unitary R
(m) oper-

ation discussed in App. A. Then, a series of operations
evolving the particles states are applied: the number of
particles of each type are counted (Ucount), Sudakov fac-

tors are used to determine if an emission occurred (U (m)
e ),

given an emission, a particular particle is chosen to radi-
ate/branch (Uh), and the resulting particle state is up-

dated (U (m)
p ). Finally, the state is rotated back to the

Bauer, et al. [1904.03196]

Work in progress
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Conclusion
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Problem 
A non-trivial “flavor” structure could induce quantum interference effects in the multi-
emission processes, which cannot be tracked by the classical parton shower algorithm 

What we did 
1. Constructed a quantum algorithm to simulate multi-emission processes, taking into 

account quantum interference and kinematical effects 
2. Demonstrated the phenomenological implications based on a toy model 

‣ Possible future directions include the optimization of the quantum circuit, inclusion 
of soft interference and next-leading order effects, noise mitigation, and more. 

‣ Thank you for your interest!
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Phenomenology example: lepton jets
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‣ Observe  decay products from  
•  decay through kinetic mixing 

‣ Interference effect on number distribution of emissions matters

A′ pp → χ̄χ + nA′ 

A′ 
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