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High-energy physics x Quantum science: my perspective

❖ Interesting interplay between computation and sensing motivated by high-energy physics!

Quantum computation Quantum sensing

Parton Shower
• PLB (2022), PRA (2024)
• Soft emissions?
• EW shower?

Error Correction

Look elsewhere?
Jet clustering?

Sensing protocols
for DM detection
• 2510.XXXXX

NV center
• JHEP (2025), PRD (2025)

Superconducting qubits
• PRA (2025)

Rydberg atoms
• arXiv: 2507.12860Anomaly detection?

@Brookhaven Forum (10/22-24)
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Overview

❖ The known fact

• Parton shower is a traditional algorithm to 
simulate high-energy multi-emission 
processes based on a classical probability 
distribution

❖ Problem

• A non-trivial “flavor” structure could 
induce quantum interference effects, 
which cannot be tracked by the classical 
parton shower algorithm

❖ What we did

• Constructed a quantum algorithm (QVPS) 
for simulation of kinematics

• Demonstrated physics implications

Höche “Introduction to parton-shower event generators”

Τ𝑍𝑇 𝛾 Τ𝑍𝐿 ℎ
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Large logarithms

❖ Soft/collinear singularities lead to an enhancement of emission processes

• Ex) 𝑞𝑞 + 𝑔 production

𝜎𝑞𝑞𝑔 ∝ 𝜎𝑞𝑞

𝛼𝑠

2𝜋
ln

𝐸0
2

𝜇IR
2 ln

𝐸0
2

𝜇IR
2

❖ The expansion parameter becomes larger  -  𝛼 → 𝛼ln

𝐸0

soft collinear

𝐸0
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Resummation of large logarithms

❖ Emissions are not necessarily suppressions at high energy scales

• Collinear emission @ LHC:                  𝛼𝑠(𝑀𝑍)

2𝜋
ln

𝐸0
2

Λ𝑄𝐶𝐷
2 ∼ 30% ⇔ 𝐸0 ∼ 0.6TeV

• Soft & collinear γ @ muon collider: 𝛼

2𝜋
ln2 𝐸0

2

𝑚𝜇
2 ∼ 30% ⇔ 𝐸0 ∼ 1TeV

• Collinear emission from heavy DM:        𝛼2(𝑀𝑍)

2𝜋
ln

𝐸0
2

𝑚𝑍
2 ∼ 30% ⇔ 𝐸0 ∼ 0.5EeV

❖ Resummation of large logs needed!

• The (collinear) leading logarithms (LL), ∼ σ𝑛 (𝛼 ln(collinear))𝑛

C. W. Bauer, et al. [2007.15001]

+ + + ⋯
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Coherence

❖ LL contributions

❖ Beyond LL 

Only ladder-type diagrams with 1 → 2 splittings contribute at the collinear LL
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Coherence

❖ LL contributions

❖ Beyond LL 

Chang+ ’70, Gribov+ ’72, Dokshitzer ’77

Only ladder-type diagrams with 1 → 2 splittings contribute at the collinear LL

ℳ1 × ℳ1
∗ = 𝜎1

ℳ1 × ℳ2
∗: Interference
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Coherence

❖ LL contributions

❖ Beyond LL 

• Virtuality ordering is another requirement
Chang+ ’70, Gribov+ ’72, Dokshitzer ’77

𝑡0 = 𝑝0
2 ∼ 𝐸0

2 > 𝑡1 > 𝑡2 > 𝑡3 ∼ 𝜇IR
2

𝑝0 𝑝1 𝑝2 𝑝3

Only ladder-type diagrams with 1 → 2 splittings contribute at the collinear LL

ℳ1 × ℳ1
∗ = 𝜎1

ℳ1 × ℳ2
∗: Interference
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❖ The relationship among cross sections

• Ex) 𝑞𝑞 + 𝑔 production

𝑑𝜎𝑞𝑞𝑔

𝑑𝑡𝑑𝑧
≃ 𝜎𝑞𝑞 σ

𝑞,𝑞

𝛼𝑠

2𝜋

1

𝑡
𝐶𝐹

1 + (1 − 𝑧)2

𝑧

❖ Can be interpreted as classical “splitting probabilities”

𝑑𝒫𝑞→𝑔𝑞 = 𝑑𝒫𝑞→𝑔𝑞 ≃
𝛼𝑠

2𝜋

𝑑𝑡

𝑡
𝐶𝐹

1 + (1 − 𝑧)2

𝑧
𝑑𝑧

𝑡 ∼ 𝐸0
2

𝐸𝑔 ≃ 𝑧𝐸0

Cross-section relations

൝
𝑡 ∈ Λ𝑄𝐶𝐷

2 , 𝐸0
2 : Virtuality

𝑧 ∈ 0,1 ≃ Energy fraction
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❖ Factorization is general ⇨ general splitting probability

• 𝑑𝒫𝑖→𝑗ℓ ≃
𝛼(𝑡,𝑧)

2𝜋

𝑑𝑡

𝑡
𝑃𝑖→𝑗ℓ(𝑧)𝑑𝑧

❖ Splitting functions in QCD

General splitting and splitting functions

𝑃𝑞→𝑔𝑞 = 𝐶𝐹

1 + (1 − 𝑧)2

𝑧
𝑃𝑞→𝑞𝑔 = 𝐶𝐹

1 + 𝑧2

1 − 𝑧

𝑃𝑔→𝑔𝑔 = 2𝐶𝐴

(1 − 𝑧(1 − 𝑧))2

𝑧(1 − 𝑧)
𝑃𝑔→𝑞𝑞 = 𝑇𝑅𝑧2(1 − 𝑧)2

𝑖
𝑗

ℓ
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Classical parton shower

❖ Is a Monte Carlo simulation that simulates multi-emission processes with

𝑑𝒫𝑖→𝑗ℓ ≃
𝛼(𝑡, 𝑧)

2𝜋

𝑑𝑡

𝑡
𝑃𝑖→𝑗ℓ(𝑧)𝑑𝑧

❖ Some well-known public codes

• Pythia8

• Herwig

• Sherpa

❖ Large log resummation is reshuffling of cross sections (ensured by unitarity)

• e.g.,  𝜎𝑞𝑞
LO = 𝜎𝑞𝑞

LO+LL + 𝜎𝑞𝑞𝑔
LO+LL + 𝜎𝑞𝑞𝑔𝑔

LO+LL + 𝜎𝑞𝑞𝑞𝑞
LO+LL + ⋯

𝑡 = 𝐸0
2 𝑡 = 𝜇IR

2

𝑡1, 𝑧1

𝑡2, 𝑧2

cf) Angular ordering Marchesini+ ’84, ’88
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Quantum interference in parton shower

❖ A loophole in the discussion so far

❖ QCD was OK (@ inclusive LO simulations)

• Flavor diagonal • Color is classical information @ LO of 𝑁𝑐

A non-trivial flavor structure makes interference effects important at the LL-level

ℳ1 × ℳ2
∗: Interference
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Models with quantum interference

❖ EW shower

• Classical treatment

❖ Simple toy model: 𝑁𝑓 fermions charged under dark 𝑈(1)

• ℒdark = σ
𝑖

𝜒𝑖(𝑖𝜕 − 𝑚𝜒)𝜒𝑖 + σ
𝑖,𝑗

𝑖𝑔𝑖𝑗𝜒𝑖𝐴′𝜒𝑗 −
1

4
𝐹𝜇𝜈

′ 𝐹′𝜇𝜈 −
1

2
𝑚𝐴′

2 𝐴𝜇
′ 𝐴′𝜇

❖ Classical parton shower simulation can not take account of quantum interference effects

• Possible phenomenological impact

J. Chen, T. Han, B. Tweedie [1611.00788]

Z. Nagy, E. Soper [0706.0017]



15 / 39So Chigusa, NT/RBRC Seminar @ BNL (10/17/2025)

Distribution of the number of emissions 

SC, Yamazaki ‘22
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From classical to quantum simulation

❖ The interference effect is a fundamental feature of the quantum mechanics

❖ Can we naturally take account of this by quantum simulation?

•  “Amplitude-level” solution: store flavor information as a superposition of quantum states!
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Simplest two-flavor example

C. W. Bauer, et al. [1904.03196]
𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗]
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Simplest two-flavor example

❖ |𝑠⟩ stores flavor information of a parton

𝑠 =
cos

𝜃

2
−sin

𝜃

2

sin
𝜃

2
cos

𝜃

2

1
0

= cos
𝜃

2
|𝑎⟩ + sin

𝜃

2
|𝑏⟩

❖ Flavor basis to interaction basis: ℒint = 𝑖𝐴′ 𝜒1

𝜒2

𝑔11 𝑔12

𝑔21 𝑔22
(𝜒1 𝜒2) = ෤𝑔𝑎 ҧ𝜒𝑎𝐴′𝜒𝑎 + ෤𝑔𝑏 ҧ𝜒𝑏𝐴′𝜒𝑏

C. W. Bauer, et al. [1904.03196]
𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗]
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Simplest two-flavor example

❖ |𝑒⟩ preserves whether the emission occurs or not

cos
𝜃

2
|𝑎⟩ cos

𝜃𝑎

2
|0𝑒⟩ + sin

𝜃𝑎

2
|1𝑒⟩ + sin

𝜃

2
|𝑏⟩ cos

𝜃𝑏

2
|0𝑒⟩ + sin

𝜃𝑏

2
|1𝑒⟩

❖ Emission probability from |𝑞⟩ (𝑞 = 𝑎, 𝑏)  -  𝑝𝑞 = sin2 𝜃𝑞

2

C. W. Bauer, et al. [1904.03196]
𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗]
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Simplest two-flavor example

❖ Measurement affects both the |𝑠⟩ and |𝑒⟩ states

cos
𝜃

2
|𝑎⟩ cos

𝜃𝑎

2
|0𝑒⟩ + sin

𝜃𝑎

2
|1𝑒⟩ + sin

𝜃

2
|𝑏⟩ cos

𝜃𝑏

2
|0𝑒⟩ + sin

𝜃𝑏

2
|1𝑒⟩        (before meas.)

⇒ |𝜓⟩ ∝ cos
𝜃

2
cos

𝜃𝑎

2
|𝑎⟩ + sin

𝜃

2
cos

𝜃𝑏

2
|𝑏⟩ |0𝑒⟩ (𝑒 = 0)

⇒ |𝜓⟩ ∝ cos
𝜃

2
sin

𝜃𝑎

2
|𝑎⟩ + sin

𝜃

2
sin

𝜃𝑏

2
|𝑏⟩ |1𝑒⟩ (𝑒 = 1)

C. W. Bauer, et al. [1904.03196]
𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗]
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cf)

❖ (𝑁 = 2)-step simulation starting from |𝑠⟩ = 𝑐𝜃/2|𝑎⟩ + 𝑠𝜃/2|𝑏⟩

❖ “Classical” anticipation

• 𝑝𝑒=1
(𝑁=1)

= 𝑐𝜃/2
2 Δ𝒫𝑎 + 𝑠𝜃/2

2 Δ𝒫𝑏

• 𝑝𝑒1=𝑒2=1
(𝑁=2)

= 𝑝𝑒=1
(𝑁=1) 2

Quantum interference effect

❖ Quantum result

• 𝑝𝑒=1
(𝑁=1)

= 𝑐𝜃/2
2 Δ𝒫𝑎 + 𝑠𝜃/2

2 Δ𝒫𝑏

• 𝑝𝑒1=𝑒2=1
(𝑁=2)

= 𝑐𝜃/2
2 Δ𝒫𝑎

2 + 𝑠𝜃/2
2 Δ𝒫𝑏

2 ≠ 𝑝𝑒=1
(𝑁=1) 2

𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗] 𝑡 ∈ [𝑡𝑗+2, 𝑡𝑗+1]
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❖ We judge if emission occurs in 𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗] and sample 𝑧 according to

Δ𝒫 ≃ ln
𝑡𝑗

𝑡𝑗+1
× න

𝑧min 𝑡𝑗

𝑧max 𝑡𝑗

𝑑𝑧
𝛼 𝑡𝑗 , 𝑧

2𝜋
𝑃 𝑧 ≤ 1

❖ The veto method for sampling based on a complicated distribution 𝑓(𝑧)

1) Prepare over-estimated quantities
• 𝑓over(𝑧) ≥ 𝑓(𝑧) with ׬𝑧min

over
𝑧max

over

𝑑𝑧 𝑓over 𝑧 = 1

• 𝑧min
over, 𝑧max

over ⊇ 𝑧min, 𝑧max

2) Sample 𝑧𝑗 according to 𝑓over(𝑧)

• Solve ׬
𝑧min

over
𝑧𝑗

𝑑𝑧′𝑓over(𝑧′) = 𝑟 ∈ [0,1)

3) Veto (= conclude no emission) if

• 𝑧𝑗 ∉ [𝑧min, 𝑧max] or 

• 𝑓(𝑧𝑗)/𝑓over(𝑧𝑗) < 𝑟′ ∈ [0,1)

Towards sampling: veto method
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Two-flavor simulation with sampling

𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗]
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❖ Sample 𝑧 according to over-estimated quantities with 𝑓over 𝑧 ≥ max (𝑓𝑎 𝑧 , 𝑓𝑏(𝑧))

Two-flavor simulation with sampling

𝑧𝑗

𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗]
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Two-flavor simulation with sampling

❖ Sample 𝑧 according to over-estimated quantities with 𝑓over 𝑧 ≥ max (𝑓𝑎 𝑧 , 𝑓𝑏(𝑧))

❖ State-dependent veto with  sin2 𝜃𝑞

2
=

𝑓𝑞(𝑧𝑗)

𝑓over(𝑧𝑗)
for  |𝑠⟩ = |𝑞⟩  (𝑞 = 𝑎, 𝑏)

𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗]
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Two-flavor simulation with sampling

❖ Sample 𝑧 according to over-estimated quantities with 𝑓over 𝑧 ≥ max 𝑓𝑎 𝑧 , 𝑓𝑏 𝑧

❖ State-dependent veto with  sin2 𝜃𝑞

2
=

𝑓𝑞(𝑧𝑗)

𝑓over(𝑧𝑗)
for  |𝑠⟩ = |𝑞⟩  (𝑞 = 𝑎, 𝑏)

Veto procedure allows to use state-independent 𝐟𝐨𝐯𝐞𝐫(𝒛) for sampling

as far as 𝐟𝐨𝐯𝐞𝐫 𝒛 ≥ max(𝐟𝐚 𝒛 , 𝐟𝐛 𝒛 ) is available

𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗]
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𝑓𝑎(𝑧) =
1

2
𝑧  , 𝑓𝑏(𝑧) =

3

4
𝑧2 and  |𝑠⟩ =

1

2
(|𝑎⟩ + |𝑏⟩)

Numerical simulation by Qiskit
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❖ 𝑁-step discretization 𝑡0 = 𝐸0
2 > 𝑡1 > 𝑡2 > ⋯ > 𝑡𝑁 = 𝜇IR

2

❖ Need mid-circuit measurement to track the preceding dynamics with full kinematics

1) Add a parton

2) Virtuality jump

Multi-step simulation with kinematics

𝑧2𝑡𝑗

(1 − 𝑧)2𝑡𝑗

𝑡𝑗 , 𝑧

𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗] 𝑡 ∈ [𝑡𝑗+2, 𝑡𝑗+1]
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Quantum Veto Parton Shower
Bauer, SC, Yamazaki ‘24

𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗]
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Quantum Veto Parton Shower

❖ Particle register |𝑞𝑘⟩ for each parton 𝑘 stores fermion flavors in ⌈log2𝑁𝑓⌉ qubits

❖ Virtuality of each patron ෥𝑞𝑗
2 𝑘 , whether it is a fermion / gauge boson, stored in classical bits

❖ Emission history is also stored in classical bits

Bauer, SC, Yamazaki ‘24

𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗]
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❖ Sampling of 𝑘 (a candidate parton that undergoes emission) and 𝑧 (energy fraction)

• Sampling of 𝑘 can be done classically again thanks to the over-estimated quantities

• Candidate splitting topology and kinematics is fixed

Quantum Veto Parton Shower
Bauer, SC, Yamazaki ‘24

𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗]
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❖ Basis rotation of fermion (if necessary)

• Due to the RGE flow, the rotation angle is scale/kinematics-dependent

• Suitable choice of the RG scale is process dependent

Quantum Veto Parton Shower

Flavor basis 0 , |1⟩ Interaction basis 𝑎 , |𝑏⟩

Herwig++ Physics and Manual [0803.0883]

Bauer, SC, Yamazaki ‘24

𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗]
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❖ Veto and determine whether the emission occurs through the mid-circuit measurement

Quantum Veto Parton Shower
Bauer, SC, Yamazaki ‘24

𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗]
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❖ If emission occurs, state update is necessary

• 𝑘 = fermion, add a new gauge boson

• 𝑘 = gauge boson, generate an entangled state |𝑞𝑘⟩|𝑞new⟩ =
1

𝛼𝑎
2+𝛼𝑏

2 𝛼𝑎|𝑎⟩|𝑎⟩ + 𝛼𝑏|𝑏⟩|𝑏⟩

Quantum Veto Parton Shower
Bauer, SC, Yamazaki ‘24

𝑡 ∈ [𝑡𝑗+1, 𝑡𝑗]
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Numerical results of QVPS

Bauer, SC, Yamazaki ‘24
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❖ Construct more efficient algorithms

• Δ𝒫𝑎 , Δ𝒫𝑏 ≪ 1 enforces fine mesh of 𝑡

• Directly sampling 𝑡 with veto

• Gate cost 𝑂(𝑁) → 𝑂 ⟨𝑛⟩

❖ Exclusive observables & soft logs

• Spin interference

• Color interference 

❖ Next-to-leading logarithms

• Quantum resources required

• Emission history in a qubit register

Future directions

Work in progress

C. W. Bauer, et al. [1904.03196]
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Spin interference

❖ Exclusive observables as a function of 𝜙 can exhibit spin interference

❖ Visible in the squeezed limit of 3-point energy correlators

H. Chen, et al. [2011.02492]
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Color interference

❖ 𝜌QCD =
1

2
|𝑔1𝑔2⟩⟨𝑔1𝑔2| +

1

2
|𝑔2𝑔1⟩⟨𝑔2𝑔1| +

2𝐶𝐹−𝐶𝐴

4𝐶𝐹
(|𝑔1𝑔2⟩⟨𝑔2𝑔1| + |𝑔2𝑔1⟩⟨𝑔1𝑔2|)

❖ Visible in 3-point (particle ID-ed) energy correlators

𝑂(1/𝑁𝑐
2)

A. J. Larkoski [2205.12375]
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Conclusion

•A non-trivial flavor structure revives interference effects 
at the LL-level

•Cannot be tracked with the classical parton shower
Problem

•Constructed the quantum veto parton shower (QVPS)
•Demonstrated the phenomenological implicationsWhat we did

•Soft interference
•Color interference
•Physics case studies and further extensions of circuit

Future directions





Application to QFT

41

‣ Quantum simulation of parton shower
• Can naturally capture the quantum nature of phenomena

‣ 𝑆-matrix calculation of lattice gauge theory
• (# of qubits required) ∼ log (# of classical d.o.f.s)

‣ Screening/confinement in Schwinger model with a topological term

• Map between spin-/fermion-/boson-systems  e.g.) Jordan-Wigner transformation

‣ Event Classification with Quantum Machine Learning

C. W. Bauer+ [1904.03196]

C. W. Bauer+ [2102.05044]

K. Terashi, M. Kaneda, T. Kishimoto, M. Saito, R. Sawada, J. Tanaka [2002.09935]

M. Honda, E. Itou, Y. Kikuchi, L. Nagano, T. Okuda [2105.03276]



Unitarity
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‣ So far focused on tree-level processes

‣ Unitarity ensures order-by-order cancellation of IR singularity
𝛼𝑠ln2

+ + + ⋯

𝛼𝑠ln2 2++𝜎incl. ⊃ 𝜎0
FO[1 + ⋯ ]

P. Skands ’12 “Introduction to QCD”

= IR finite

𝜎0
FO𝐶𝐹

𝛼𝑠

2𝜋
ln2

𝐸0
2

𝜇IR
2 −𝜎0

FO𝐶𝐹

𝛼𝑠

2𝜋
ln2

𝐸0
2

𝜇IR
2

+ +

- 𝜎incl. = 𝜎0
FO

- 𝜎𝑛≥𝑘
incl. = 𝜎𝑘

tree,LL



Phenomenology example: lepton jets
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‣ Observe 𝐴′ decay products from 𝑝𝑝 → 𝜒𝜒 + 𝑛𝐴′

• 𝐴′ decay through kinetic mixing

‣ Interference effect on number distribution of emissions matters

A. Falkowski+ [1002.2952]

- “Lepton jets” for 𝑚𝐴′ ≲ GeV
C. Cheung+ ’09, P. Meade+ ’09,  A. Falkowsk+ ’10 

- Cuts on lepton multiplicity  eg) ≥ 4 muons

ATLAS [1212.5409]
ATLAS [1409.0746]
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Numerical simulation by Qiskit

❖ |𝑠⟩ = 𝛼0|𝑎⟩ + 𝛼1|𝑏⟩ after meas. of |𝑒⟩

❖ Analytically / Numerically checked quantum state evolution is OK up to 𝑂 Δ𝒫𝑞
2

• Require Δ𝒫𝑎 , Δ𝒫𝑏 ≪ 1



Error mitigation
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‣ Large 𝑁 ≳ 𝒪(30) w/o mid-circuit measurement requires real quantum computers

‣ Fight with noise in quantum computation
• Error correction
• Resolve the reason of machine dependence

IBMQ_Santiago (5 qubits) w/o error mitigation after error mitigation
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Quantum simulation of soft interference

❖ Ex) 𝑞 ത𝑞 + 𝑔

❖ Interference of emission histories

• Need to extend our approach with   
quantum history registers

• No collinear logs

• In different jet cones

• Soft logs

• Wide-angle soft emissions

C. W. Bauer, et al. [1904.03196]
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