Quantum simulation of parton shower with kinematics

So Chigusa (LBNL/UC Berkeley) with C. W. Bauer and M. Yamazaki PLB 834 (2022) 137466 [arXiv: 2204.12500] PRA 109 (2024) 3, 032432 [arXiv: 2310.19881]

Quantum computation: NISQ era

Development Roadmap 2016-2019 🛛 2020 🥥 2021 🖌 2022 🥏 2023 🥥 Release multi-Run quantum circuits Enhancing quantum Bring dynamic execution speed by circuits to unlock on the IBM Quantum Platform execution speed by dimensional more computations roadmap publicly 100x with Qiskit 5x with quantum with initial aim Runtime serverless and focused on scaling Execution modes Data Scientist Middleware Researchers iskit Runtime Quantum Physicist \bigcirc Execution Modes 🛛 🥪 QASM3 Dynamic circuits 🛛 😔 BM Ouantum Experience Falcon **Ø** Eagle Early **Benchmarking** Benchmarking 127 qubits Albatross Penguin Prototype 16 qubits 20 qubits 53 qubits Canary 27 gubits 5 aubits

Innovation Roadmap

Software Innovation	IBM ♀ Quantum Experience	Qiskit Circuit and operator API with compilation to multiple targets	Application modules Modules for domain specific application and algorithm workflows	Qiskit Runtime Performance and abstract through Primitives	Serverless Demonstrate concepts of quantum centric- supercomputing	AI enha quantur Prototype demonstra enhanced transpilatio
Hardware Innovation	Early Canary Penguin 5 qubits 20 qubits Albatross Prototype 16 qubits 53 qubits	Falcon Demonstrate scaling with I/O routing with Bump bonds	Hummingbird Demonstrate scaling with multiplexing readout	Eagle Demonstrate scaling with MLW and TSV	Osprey Enabling scaling with high density signal delivery	Condor Single syst scaling and capacity
Executed by IBMOn target						Heron Architectur based on tu couplers

IBM Quantum / © 2023 IBM Corporation

IBM Quantum

Overview

The fact

Parton shower is a traditional algorithm to simulate high-energy multi-emission processes based on a classical probability distribution

Problem

A non-trivial "flavor" structure could induce quantum interference effects, which cannot be tracked by the classical parton shower algorithm

What we did

- account quantum interference and kinematical effects
- 2. Demonstrated the phenomenological implications based on a toy model

1. Constructed a quantum algorithm to simulate multi-emission processes, taking into

Table of contents

- A brief review of the (classical) parton shower
 - How it works
 - Why quantum interference could be important
 - Some analytical results
 - Phenomenological implications
- Quantum Veto Parton Shower (QVPS) algorithm
 - Bottom-up demonstration of construction ideas
 - How to incorporate kinematic information
 - Implication from the quantum interference effect
- Future directions

Large logarithms

- Soft/collinear singularities lead to an enhancement of emission processes
 - Ex) $q\bar{q} + g$ production

• The expansion parameter becomes larger - $\alpha \rightarrow \alpha \ln \alpha \ln^2$

2024/5/28 So Chigusa @ KIAS QUC-AIHEP

5 / 38

Resummation of large logarithms

- Emissions are not necessarily suppressions at high energy scales
 - α_{s} Collinear emission @ LHC:
 - Soft & collinear γ @ muon collider:
 - Collinear emission from heavy DM:

C. W. Bauer, et al. [2007.15001]

$$\frac{(M_Z)}{2\pi} \ln\left(\frac{E_0^2}{\Lambda_{QCD}^2}\right) \sim 30\% \quad \Leftrightarrow \quad E_0 \sim 0.6 \,\mathrm{TeV}$$

$$\frac{\alpha}{2\pi} \ln^2 \left(\frac{E_0^2}{m_\mu^2} \right) \sim 30 \% \quad \Leftrightarrow \quad E_0 \sim 1 \text{ TeV}$$

$$\frac{\alpha_2(M_Z)}{2\pi} \ln\left(\frac{E_0^2}{m_Z^2}\right) \sim 30\% \quad \Leftrightarrow \quad E_0 \sim 0.5 \text{ EeV}$$

6 / 38

Coherence

Only ladder-type diagrams with $1 \rightarrow 2$ splittings contribute at the LL

Classical probabilistic interpretation

- The relationship among cross sections
 - Ex) $q\bar{q} + g$ production

$$\frac{d\sigma_{q\bar{q}g}}{dt\,dx} \simeq \sigma_{q\bar{q}} \sum_{f=q,\bar{q}} \frac{\alpha_s}{2\pi} \frac{1}{t_q} C_F \frac{1+1}{t_q}$$

Can be interpreted as classical "splitting probabilities"

$$d\mathscr{P}_{q \to gq} = d\mathscr{P}_{\bar{q} \to g\bar{q}} \simeq \frac{\alpha_s}{2\pi} \frac{dt}{t} C_F \frac{1 + (1 - x)^2}{x} dx$$

General splitting and splitting functions

General formula of the splitting probability

$$d\mathcal{P}_{i \to j\ell} \simeq \frac{\alpha(t, x)}{2\pi} \frac{dt}{t} P_{i \to j\ell}(x) dx$$

Splitting functions in QCD

 $P_{q \to qg} = C_F \frac{1 + x^2}{1 - x}$

 $P_{g \to gg} = 2C_A \frac{(1 - x(1 - x))^2}{x(1 - x)} \qquad \qquad P_{g \to q\bar{q}} = T_R x^2 (1 - x)^2$

 $P_{q \to gq} = C_F \frac{1 + (1 - x)^2}{x}$

• cf) helicity effects in EW theory Chen+ [1611.00788] cf) mass effects in dark U(1) Chen+ [1807.00530]

9 / 38

Classical parton shower

- Inevitable for high-E simulation
 - Pythia8
 - Herwig
 - Sherpa
 - etc…

Unitarity ensures that the inclusive cross section is unchanged

• e.g., $\sigma_{q\bar{q}}^{\text{LO}} = \sigma_{q\bar{q}}^{\text{LO+LL}} + \sigma_{q\bar{q}g}^{\text{LO+LL}} + \sigma_{q\bar{q}gg}^{\text{LO+LL}} + \sigma_{q\bar{q}q\bar{q}}^{\text{LO+LL}} + \cdots$

Monte Carlo simulation to determine the multi-emission cross sections based on

 t_2, x_2

10/38

Analytic results for soft emissions

Consider soft & collinear gluon emissions from a high-energy quark

No emission probability for a given range $\Delta(t_0, t)$ $\frac{d}{dt}\Delta(t_0, t) = -R(t)\Delta(t_0, t) \Rightarrow \Delta(t_0, t_1) = \exp\left(-\int_{t_0}^{t_1} dt R(t)\right)$ $p_0 = \Delta(\mu_{\rm IR}^2, E_0^2) \equiv e^{-\lambda}$ with $\lambda \simeq C_F \frac{\alpha_s}{2\pi} \ln^2 \frac{E_0^2}{\mu_{\rm IR}^2}$ $p_1 \simeq \int_{t}^{t_{\max}} dt \,\Delta(t_{\min}, t) R(t) \Delta(t, t_{\max}) = \lambda e^{-\lambda}$ $p_n \simeq \frac{1}{n!} \lambda^n e^{-\lambda}$ probability of *n* gluons

• A Poisson distribution with an average $\lambda \propto \alpha \ln^2$

Quantum interference in parton shower

A loophole in the discussion so far

- QCD is "trivial" in this context
 - Flavor diagonal

A non-trivial flavor structure makes interference effects important at the LL-level

Color information is preserved

Models with quantum interference

- EW shower
 - Classical treatment
 - Z. Nagy, E. Soper [0706.0017]
 - J. Chen, T. Han, B. Tweedie [1611.00788]

• Simple toy model: N_f fermions charged under dark U(1)

•
$$\mathscr{L}_{\text{dark}} = \sum_{i} \bar{\chi}_{i} (i\partial - m_{\chi_{i}}) \chi_{i} + \sum_{i,j} i g_{ij} \bar{\chi}_{i} A' \chi_{j} - \frac{1}{4} F'_{\mu\nu} F$$

effects in these models, but they can be phenomenologically important

 $r'^{\mu\nu} - \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu}$

Classical parton shower simulation can not take into account quantum interference

Analytic treatment of interference effects

• A simple toy model with N_f flavors of fermions

$$\mathscr{L}_{\text{int}} = i\bar{\chi}GA'\chi$$
 with $\chi = \begin{pmatrix} \chi_1 \\ \vdots \\ \chi_{N_f} \end{pmatrix}$; $G = \begin{pmatrix} g & \cdots \\ \vdots \\ g & \cdots \end{pmatrix}$

For n gauge boson processes

• Simple rescaling $\frac{p_n}{p_n} \rightarrow N_f \frac{p_n}{p_n}$ allows us to include the interference effects p_{n-1} p_{n-1}

14 / 38

Distribution of the number of emissions

 $\langle n \rangle = 1$

15 / 38

From classical to quantum simulation

- The interference effect is a fundamental feature of the quantum mechanics
- Can we naturally include this effect in the numerical simulation by using superposition states in the quantum simulation?

Simplest two-flavor example

Simplest two-flavor example $|s\rangle \qquad R_y(\phi) \qquad R_y(\phi) \qquad R_y(\theta_b) \qquad \mathcal{R}_y(\theta_b) \qquad \mathcal{R}_y($

• $|s\rangle$ stores a quantum state of a parton

$$|s\rangle = \begin{pmatrix} \cos\frac{\phi}{2} & -\sin\frac{\phi}{2} \\ \sin\frac{\phi}{2} & \cos\frac{\phi}{2} \end{pmatrix}$$

 $|e\rangle$ preserves whether the emission occurs or not

$$|\psi\rangle \equiv |s\rangle |e\rangle = \cos\frac{\phi}{2} |a\rangle \left(\cos\frac{\theta_a}{2} |0_e\rangle + \right)$$

Simplest two-flavor example

$$|s\rangle = R_{y}(\phi)$$

$$|e\rangle = R_{y}(\theta_{a}) = R_{y}(\theta_{b})$$
Measurement affects both the $|s\rangle$ and $|e\rangle$ states
$$\psi\rangle \equiv |s\rangle|e\rangle = \cos\frac{\phi}{2}|a\rangle \left(\cos\frac{\theta_{a}}{2}|0_{e}\rangle + \sin\frac{\theta_{a}}{2}|1_{e}\rangle\right) + \sin\frac{\phi}{2}|b\rangle \left(\cos\frac{\theta_{b}}{2}|0_{e}\rangle + \sin\frac{\theta_{b}}{2}|1_{e}\rangle\right)$$

$$\Rightarrow |\psi\rangle \propto \left(\cos\frac{\phi}{2}\cos\frac{\theta_{a}}{2}|a\rangle + \sin\frac{\phi}{2}\cos\frac{\theta_{b}}{2}|b\rangle\right)|0_{e}\rangle \quad (e = 0)$$

$$|\psi\rangle = \left(-\frac{\phi}{2} + \frac{\theta_{a}}{2}|b\rangle + \sin\frac{\phi}{2}(b)\right)|0_{e}\rangle \quad (e = 0)$$

$$|s\rangle = R_{y}(\phi)$$

$$|e\rangle = R_{y}(\theta_{a}) = R_{y}(\theta_{b})$$
asurement affects both the $|s\rangle$ and $|e\rangle$ states
$$\equiv |s\rangle|e\rangle = \cos\frac{\phi}{2}|a\rangle \left(\cos\frac{\theta_{a}}{2}|0_{e}\rangle + \sin\frac{\theta_{a}}{2}|1_{e}\rangle\right) + \sin\frac{\phi}{2}|b\rangle \left(\cos\frac{\theta_{b}}{2}|0_{e}\rangle + \sin\frac{\theta_{b}}{2}|1_{e}\rangle\right)$$

$$\Rightarrow |\psi\rangle \propto \left(\cos\frac{\phi}{2}\cos\frac{\theta_{a}}{2}|a\rangle + \sin\frac{\phi}{2}\cos\frac{\theta_{b}}{2}|b\rangle\right)|0_{e}\rangle \quad (e = 0)$$

$$\Rightarrow |\psi\rangle \propto \left(\cos\frac{\phi}{2}\sin\frac{\theta_a}{2}|a\rangle + \sin\frac{\phi}{2}\sin\frac{\theta_b}{2}|b\rangle\right)|1_e\rangle \qquad (e=1)$$

20 / 38

Towards sampling: veto method

• We judge if emission occurs in $t_i < t < t_i + \Delta t$ and sample x according to

 $\Delta \mathscr{P} \simeq R(t_i) \Delta t$ and K

• The veto method for sampling based on a complicated distribution f(x)1) Prepare over-estimated quantities $f^{\text{over}}(x) \ge f(x)$ with $\int_{x_{\min}^{\text{over}}}^{x_{\max}^{\text{over}}} dx f^{\text{over}}(x) = 1$ $[x_{\min}^{\text{over}}, x_{\max}^{\text{over}}] \supseteq [x_{\min}, x_{\max}]$ 2) Sample x_i according to $f^{over}(x)$ Solve $\int_{x_{\text{min}}}^{x_j} dx' f^{\text{over}}(x') = r \in [0,1)$ 3) Veto (= conclude no emission) if $x_j \notin [x_{\min}, x_{\max}]$ or $f(x_j) / f^{over}(x_j) < r' \in [0, 1)$

$$R(t_j) \simeq \frac{1}{t_j} \int_{x_{\min}(t_j)}^{x_{\max}(t_j)} dx \, \frac{\alpha(t_j, x)}{2\pi} P(x)$$

Sampling of x according to the over-estimated quantities

Sampling of x according to the over-estimated quantities

Veto procedure allows to use state-independent $f^{over}(x)$ for sampling as far as $f^{over}(x) \ge f_a(x), f_b(x)$

• State-dependent veto with $\sin^2 \frac{\theta_q}{2} = \frac{f_q(x)}{f^{\text{over}}}$

$$\frac{(x_j)}{(x_j)}$$
 for $|s\rangle = |q\rangle$ $(q = a, b)$

25 / 38

Numerical simulation by Qiskit

$N_{\rm shot} = 10^{5}$

Numerical simulation by Qiskit

• $|s\rangle = \alpha_0 |a\rangle + \alpha_1 |b\rangle$ after meas. of $|e\rangle$

Analytically / Numerically checked quantum state evolution is OK up to $O\left(\Delta \mathscr{P}_q^2\right)$ - Require $\Delta \mathscr{P}_a$, $\Delta \mathscr{P}_b \ll 1$

27 / 38

Quantum interference effect

• (N = 2)-step simulation starting from $|s\rangle = c_{\phi} |a\rangle + s_{\phi} |b\rangle$

 "Classical" anticipation $p_{e=1}^{(N=1)} = c_{\phi}^2 \Delta \mathcal{P}_a + s_{\phi}^2 \Delta \mathcal{P}_b$ $p_{e_1=e_2=1}^{(N=2)} = \left(p_{e=1}^{(N=1)}\right)^2$

Quantum result

$$p_{e=1}^{(N=1)} = c_{\phi}^2 \Delta \mathscr{P}_a + s_{\phi}^2 \Delta \mathscr{P}_b$$

 $p_{e_1=e_2=1}^{(N=2)} = c_{\phi}^2 \Delta \mathscr{P}_a^2 + s_{\phi}^2 \Delta \mathscr{P}_b^2 \neq \left(p_{e=1}^{(N=1)}\right)^2$

Multi-step simulation with kinematics

► Discretize $t \in \left[\mu_{\mathrm{IR}}^2, E_0^2\right]$ to N-steps as $t_0 = E_0^2 > t_1 > t_2 > \cdots > t_N = \mu_{\mathrm{IR}}^2$

Need mid-circuit measurement to track the preceding dynamics with full kinematics

1) Add new parton

2) Vituality jump

- Particle register $|q_k\rangle$ for each parton k stores fermion flavors in $\lceil \log_2 N_f \rceil$ qubits
- Emission history is also stored in classical bits

Virtuality of each patron $\tilde{q}_i^2(k)$, whether it is a fermion / gauge boson, stored in classical bits

31 / 38

- Sampling of k (a candidate parton that undergoes emission) and z (energy fraction)
 - Sampling of k can be done classically again thanks to the over-estimated quantities
 - Candidate splitting topology and kinematics is fixed

dergoes emission) and z (energy fraction) ain thanks to the over-estimated quantities tics is fixed

- Basis rotation of fermion (if necessary)
 - Due to the RGE flow, the rotation angle is scale/kinematics-dependent
 - Suitable choice of the RG scale is process dependent

Herwig++ Physics and Manual [0803.0883]

33 / 38

Veto and determine whether the emission occurs through the mid-circuit measurement

- If emission occurs, state update is necessary
 - k = fermion, add a new gauge boson
 - k = gauge boson, generate an **entangled** s⁻

tate
$$|q_k\rangle |q_{\text{new}}\rangle = \frac{1}{\alpha_a^2 + \alpha_b^2} \left(\alpha_a |a\rangle |a\rangle + \alpha_b |b\rangle |b\rangle \right)$$

2024/5/28 So Chigusa @ KIAS QUC-AIHEP

35 / 38

Numerical results of QVPS

Summary of the setup

$$|s\rangle = |1\rangle \equiv \frac{1}{\sqrt{2}} (|a\rangle + |b\rangle)$$

$$\alpha_f(\mu) = \frac{\alpha_f^0}{\beta_0 \ln(\mu^2 / \Lambda_D^2)} \quad (\alpha_0^a = 0.5, \, \alpha_0^b = 2)$$

$$\beta_0 = \frac{33 - 2N_f}{4\pi} \quad (N_f = 2)$$

Some analytic result

$$p_2(n) = \frac{\left(\sqrt{N_a(n)} - \sqrt{N_b(n)}\right)^2}{2\left(N_a(n) + N_b(n)\right)}$$

Future directions

- Construct more efficient algorithms
 - $\Delta \mathcal{P}_a$, $\Delta \mathcal{P}_b \ll 1$ enforces fine mesh of t
 - Directly sampling t with veto
 - Gate cost $O(N) \rightarrow O(\langle n \rangle)$ Work in progress
- Treatment of soft interference
 - Global entanglement
 - Quantum treatment of history
- Next-to-leading logarithms
- Noise mitigation

Quantum resources required

Register	Purpose	2 flavors
q angle	Particle state	$N+n_I$
$ e\rangle$	Did emission happen?	1

Element	Purpose	Gate Cost
$U(\mu^2)$	Flavor rotation	2N
$RY(\theta)$	Emission	4N
$R(\Phi)$	Particle update	2N

Emission history in a qubit register

Bauer, et al. [1904.03196]

2024/5/28 So Chigusa @ KIAS QUC-AIHEP

Jogo of

Conclusion

Problem

A non-trivial "flavor" structure could induce quantum interference effects in the multiemission processes, which cannot be tracked by the classical parton shower algorithm

What we did

- account quantum interference and kinematical effects
- 2. Demonstrated the phenomenological implications based on a toy model
- Thank you for your interest!

1. Constructed a quantum algorithm to simulate multi-emission processes, taking into

Possible future directions include the optimization of the quantum circuit, inclusion of soft interference and next-leading order effects, noise mitigation, and more.

Phenomenology example: lepton jets

- Observe A' decay products from $pp \rightarrow \bar{\chi}\chi + nA'$
 - A' decay through kinetic mixing

A. Falkowski⁺ [1002.2952]

Interference effect on number distribution of emissions matters

- "Lepton jets" for $m_{A'} \lesssim \text{GeV}$

C. Cheung+ '09, P. Meade+ '09, A. Falkowsk+ '10

ATLAS [1212.5409] ATLAS [1409.0746]

- Cuts on lepton multiplicity eg) \geq 4 muons

