Light Dark Matter Search with NV Centers: Electron Spin, Nuclear Spin, and Comagnetometry

So Chigusa with M. Hazumi, D. Herbschleb, Y. Matsuzaki, N. Mizuochi, K. Nakayama arXiv: 2302.12756 + ongoing works

International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles WPI research center at KEK

Dark Matter as a hint of new physics

㾎DM existence, abundance 㾎Has gravitational interaction

Wikipedia "Galaxy rotation curve", E. Corbelli, P. Salucci (2000) | Wikipedia "Cosmic microwave background", 9 years of WMAP data

"Known"

㾎DM mass 㾎Non-gravitational interactions

4/19/2024 So Chigusa @ University of Minnesota

"Unknown"

Mass scale of dark matter (not to scale)

m ≪ 30 eV DM behaves as classical wave

• Classical wave-like dark matter (axion, dark photon) has $O(10^{20})$ mass spread

 $3/40$

DM-induced effective magnetic field

‣ Misalignment mechanism: DM field performs coherent oscillation

‣ DM-SM fermion interactions can be viewed as an effective magnetic field

 $a(t) \simeq a_0 \cos \left(m_a t - \vec{v}_a \cdot \vec{x} + \delta\right)$ ⃗

with coherence time

$$
\tau_a \sim \frac{1}{m_a v_a^2} \sim 7s \left(\frac{10^{-10} \text{eV}}{m_a}\right)
$$

$$
\mathcal{L} = g_{aff} \frac{\partial_{\mu} a}{2m_f} \bar{f} \gamma^{\mu} \gamma_5 f \rightarrow H_{eff} = \frac{g_{aff}}{m_f} \nabla a \cdot \mathbf{S}_f \rightarrow \mathbf{B}_{eff} \simeq \sqrt{2\rho_{DM}} \frac{g_{aff}}{e} \mathbf{v}_{DM} \cos(m_a t + \delta) \sim 3 \text{ aT} \left(\frac{g_{aff}}{10^{-10}}\right)
$$

• We need a detection method with high sensitivity and broad frequency coverage!

 $4 / 40$

Table of contents

- ‣ Introduction to wave DM
- Introduction to NV center
- ‣ NV center magnetometry for DM detection
	- DC magnetometry + application to DM detection
	- AC magnetometry + application to DM detection
	- Entanglement is useful
- ‣ NV center magnetometry with nuclear spin
	- How it works
	- Comagnetometry
- ‣ Conclusion

Introduction to NV center

NV center in diamond John F. Barry et al.: Sensitivity optimization for NV-diamond …

-
- ► The charged state NV[−] has two extra e^- s localized at V vacant in the contract or divolized at v
- ► The ground state: e^- orbital singlet, e^- spin triplet $S = 1$ system

• The stable complex of substitutional nitrogen (N) and vacancy (V) in diamond which consists of the constant of a substitutional nutries of the substitution of the constant of the constant

> 7 / 40 $7 / 40$

Fluorescence readout

‣ Fluorescence measurement allows us to read out the *e* -spin quantum state [−]

$$
|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}| \pm \rangle
$$

4/19/2024 So Chigusa @ University of Minnesota

J. F. Barry, et al. ʻ23

NV center as a quantum sensor

- ‣ NV center works as a multimodal quantum sensor
	- 1. Temperature G. Kucsko, et al. ʻ13
	- 2. Electric field F. Dolde, et al. ʻ11
	- 3. Strain
-
- M. Barson, et al. ʻ17
- 4. Magnetic field (explain later)
	- Sizable relaxation time $\geq 1 \mu s$ even at room temperature
	- Wide dynamic range = broad frequency coverage
- **Two options**
	- 1. Single NV center (high spacial resolution)
	- 2. Ensemble of NV centers (high sensitivity)
		- ~ 1 20 ppm concentration is achieved

M. W. Doherty, et al. [1302.3288]

T. Wolf, et al. ʻ15

9 / 40

DC magnetometry

Rabi cycle

Nabi cycle dipole moments during d eters fMz; N yg, N y
My n yg, N yg,

► A transverse driving field $\mathbf{B}_1 = B_{1y} \hat{\mathbf{y}} \sin(2\pi ft)$ with $f = \Delta E \equiv D - \frac{g_e \mu_B}{h}$ \mathbf{b} and \mathbf{c} and \mathbf{c} and \mathbf{c} and \mathbf{c} and \mathbf{c} se driving field $B_1 = B_{1y} \hat{y} \sin(2\pi ft)$ with $f = \Delta E \equiv D - \frac{\partial e_f B}{\partial x}$

causes transition between $|0\rangle, |- \rangle$ an between 10) L $\frac{1}{2}$ y − S22

▸ Time evolution is described by the Rabi cycle $|\psi(t)\rangle = \cos$ 1 2 $\gamma_e B_{1y} t$ $|0\rangle + \sin \left(\frac{b_{1y} t}{2} + \frac{b_{1y} t}{2}\right)$ 1 2 $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ $\left(\begin{array}{cc} 1 & \mu & \mu \\ 0 & 1 & \mu \end{array} \right)$ the term of $\left(\begin{array}{cc} 1 & \mu & \mu \\ 0 & 1 & \mu \end{array} \right)$ $\left\{\sqrt{2}^{Ie^{D_{1y}}}\right\}^{10}$ is the $\left\{\sqrt{2}^{Ie^{D_{1y}}}\right\}^{10}$ $\sqrt{V^2}$ basis, $\sqrt{V^2}$ basis, $\sqrt{V^2}$

> 11 $f11/40$ regime, the terms in Helecjstr proportional to d⊥Ei þ Mi can belgistr proportional to d⊥Ei þ Mi can belgistr p
Eindig

/ 40 4/19/2024 So Chigusa @ University of Minnesota MWs (gray oval) address the jms ¼ 0i → jms ¼ þ1i transition. population in the jms ¼ '1i states. In this diagram, resonant

Graphical illustration by Bloch sphere

 \triangleright The qubit system $\{|0\rangle, |-\rangle\}$ is illustrated by the Bloch sphere : Map from $|\psi\rangle = \cos \frac{\theta}{2} |0\rangle + \sin \frac{\theta}{2} e^{i\varphi} |-\rangle$ to a sphere *θ* $\frac{1}{2}$ | 0 \ + sin *θ* 2

 $e^{i\varphi}$ | − \rangle to a sphere S^2

12/40

► Rotation around $\overline{B}_1 \propto \hat{y}$ $\ddot{}$ ̂

Rabi cycle on Bloch sphere Rabi cycle $|0\rangle$ \vec{B}_1 У

$$
|\psi(t)\rangle = \cos\frac{\theta(t)}{2}|0\rangle + \sin\frac{\theta(t)}{2}|-\rangle, \quad \theta(t) = \sqrt{\}
$$

13/40

 \triangleright Weak signal magnetic field B_{DM}^z causes free precession DM

$$
|\psi(\tau)\rangle = \frac{1}{\sqrt{2}} (|0\rangle + e^{i\varphi(\tau)}| - \rangle) \text{ with } \varphi(\tau) = \gamma_e \Bigg\}
$$

with $\varphi(\tau) = \gamma_e | dt B_{DM}^z(t)$ ($\varphi(\tau) \simeq \gamma_e B_{DM}^z \tau$ for DC-like signal) *τ* J_{\bigcap} $dt B_{\text{DM}}^{z}(t)$ $\left(\varphi(\tau) \simeq \gamma_{e} B_{\text{DM}}^{z} \tau\right)$

14/40

4/19/2024 So Chigusa @ University of Minnesota

Free precession

Ramsey sequence for DC magnetometry

- 1. $(\pi/2)_y$ pulse
- 2. Free precession under **B**_{DM} for duration *τ*
- 3. $(\pi/2)_x$ pulse
- 4. Fluorescence measurement
- ‣ Signal estimate *S* ≡ with $\tau \sim T^*_2 \sim 1\,\mu\mathrm{s}$: spin relaxation (dephasing) time 1 2 $\langle \psi_{fin.} | \sigma_z | \psi_{fin.} \rangle \propto \varphi(\tau) = \gamma_e B_{DM}^z \tau$ 2 $∼ 1 \mu s$

4/19/2024 So Chigusa @ University of Minnesota

Ramsey sequence

Sensitivity on axion DM

• (Roughly) universal sensitivity to the dc-like region $m \leq 2\pi/\tau \sim 10^{-8} eV$

16/40

- 1. $(\pi/2)_y$ pulse
- 2. Free precession for duration $\tau \sim T_2^*/2$
- 3. Fluorescence measurement

4/19/2024 So Chigusa @ University of Minnesota

If , DM field itself works as a driving field *m*/2*π* ≃ *f*

"Resonance'' sequence for *m*/2*π* ≃ *f*

DM on resonance

On resonance sensitivity

‣ Resonance position *m* ∼ (10) GHz is tunable with external *Bz*

Frequency $m/(2\pi)$ [Hz]

4/19/2024 So Chigusa @ University of Minnesota

18/40

AC magnetometry

‣ Fast oscillation leads to cancellation when $m \gtrsim 2\pi/\tau$

4/19/2024 So Chigusa @ University of Minnesota

Insensitive to fast-oscillating signals

Hahn echo for ac magnetometry

- 1. $(\pi/2)_y$ pulse
- 2. Free precession for *τ*/2
- 3. π ^{*y*} pulse
- 4. Free precession for *τ*/2
- 5. $(\pi/2)_x$ pulse
- 6. Fluorescence measurement

$$
\varphi(\tau) = \gamma_e \bigg(\int_0^{\tau/2} dt B_{\text{DM}}^z(t) - \int_{\tau/2}^{\tau} dt B_{\text{DM}}^z(t) \bigg) \Longrightarrow
$$

 \int ⇒ Targeted at the frequency $\sim 1/\tau$

21/40

4/19/2024 So Chigusa @ University of Minnesota

Hahn echo (Dynamic Decoupling)

Longer relaxation time

 \rightarrow Any DC effect cancels out from $\varphi(t)$

22

- ‣ No dephasing from inhomogeneous DC fields
- ‣ Relaxation time *T*² ∼ 100 *μ*s ≫ *T** 2 ∼ 1 *μ*s

Sensitivity on axion DM

 \triangleright At the target frequency $m \sim 2\pi/T$ ₂ ∼ $\mathcal{O}(100)$ kHz better sensitivity than Ramsey

23

Quantum metrology ‣ Possible application of involved quantum metrology techniques to NV center

-
- ‣ Example: use of entanglement (the GHZ state)
	- Transmon qubit
	- Paul ion trap

$$
\blacktriangleright |\psi\rangle = \otimes_c \frac{1}{\sqrt{2}} (|0\rangle_c + |1\rangle_c)
$$

$$
\rightarrow |\psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle^{\otimes N} + |1\rangle^{\otimes N})
$$

 \times *N* gain at the level of amplitude, \times *N*² gain of signal \mathbb{P} is the line is the line is the line is the connected by the control Ω . The UDM represents the UDM represents the UDM represents the UDM representation of the UDM representation of the UDM representation of the

S. Chen+ [2311.10413]
A. Ito+ [2311.11632]
$$
\begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

sensors, $|g\rangle$

 $\otimes n_\text{q}$

sianal C. L. Degan+ "Quantum sensing" for review

 $24/40$ $A = \frac{1}{2} \int_{\mathbb{R}^d} \left(\frac{1}{\| \mathcal{M} \|} \mathcal{M} \$

/ 40 4/19/2024 So Chigusa @ University of Minnesota $\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i$

Quantum metrology ‣ Possible application of involved quantum metrology techniques to NV center

-
- ‣ Example: use of entanglement (the GHZ state)
	- Transmon qubit

• Paul ion trap

 \blacktriangleright $|\psi\rangle = \otimes_c$

1

2

$$
\rightarrow |\psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle^{\otimes N} + e^{iN\varphi} |1\rangle^{\otimes N})
$$

 \times *N* gain at the level of amplitude, \times *N*² gain of signal \mathbb{P} is the line is the line is the line is the connected by the control Ω . The UDM represents the UDM represents the UDM represents the UDM representation of the UDM representation of the UDM representation of the

$$
(|0\rangle_c + e^{i\varphi} |1\rangle_c)
$$

A. Ito+ [2311.11632] S. Chen+ [2311.10413]

sianal C. L. Degan+ "Quantum sensing" for review

 $25/40$ $A = \frac{1}{2}$

/ 40 4/19/2024 So Chigusa @ University of Minnesota $\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i$

Nuclear spins

Manipulation of nuclear spins

► Mixing between e^- (\vec{S}) and ¹⁴N (\vec{l}) spin states caused by $H_{\text{hyp}} = AS_zI_z$ allows │
│

the controlled-manipulation

Dutt+, Science (2007) Neumann+, Nature (2010) van der Sar+, Nature (2012)

Manipulation of nuclear spins

► Mixing between e^- (\vec{S}) and ¹⁴N (\vec{l}) spin states caused by $H_{\text{hyp}} = AS_zI_z$ allows │
│

the controlled-manipulation

Dutt+, Science (2007) Neumann+, Nature (2010) van der Sar+, Nature (2012)

Manipulation of nuclear spins

► Mixing between e^- (\vec{S}) and ¹⁴N (\vec{l}) spin states caused by $H_{\text{hyp}} = AS_zI_z$ allows │
│

the controlled-manipulation

Dutt+, Science (2007) Neumann+, Nature (2010) van der Sar+, Nature (2012)

General manipulation & measurement long coherence times that fulfills most of the re-General manipulation nuclear spin state–selective microwave (MW) p e_l measurement

- \mathcal{X}^{\times}
- ‣ General *SU*(4) $\sum_{i=1}^n \sigma_i$ $\text{OCHIGI} \text{ at } \text{O}(4)$

‣ Nuclear spin measurement $\overline{}$

► Controlled- $R_x(\pi) \sim \text{CNOT}$ is the unique essential building block of general operation \cdot Controlled-R (π) \sim CNOT is the unique essential building block of general oneration operation is equivalent to a controlled not (CNOT) is equivalent to a controlled not (CNOT) is equivalent to a
controlled not (CNOT) is equivalent to a controlled not (CNOT) is equivalent to a controlled not (CNOT) is equ

General manipulation & measurement long coherence times that fulfills most of the re-General manipulation nuclear spin state–selective microwave (MW) p e_l measurement

- \mathcal{X}^{\times}
- ‣ General *SU*(4) $\sum_{i=1}^n \sigma_i$ $\text{OCHIGI} \text{ at } \text{O}(4)$

 \overline{U}

u

v

al. [5] and Kraus et al. [5] and Vidal & Dawson, PRA (2003) Vidal & Dawson, PRA (2003)

‣ Nuclear spin measurement $\overline{}$

(# of CNOTs) \leq 3 $4 \pi \int_{0}^{\pi}$ important in order to prove the proven in order to prove the prove theorem 1 is $\frac{1}{2}$ of nuclear spins (9) and the essential decoupling

► Controlled- $R_x(\pi) \sim \text{CNOT}$ is the unique essential building block of general operation \cdot Controlled-R (π) \sim CNOT is the unique essential building block of general oneration operation is equivalent to a controlled not (CNOT) is equivalent to a controlled not (CNOT) is equivalent to a
controlled not (CNOT) is equivalent to a controlled not (CNOT) is equivalent to a controlled not (CNOT) is equ

Nuclear spins of $14N$ can same way as elec III LIIE SAIIIE WAY AS EIECLION SPIIR $\sqrt{N_{\text{total}}$ $\vert U \vert = \vert U \vert$ inducted spins of the carrier disc **show the same way as electron spin** in the same way as electron spins!

Composition of 14N spin

- \blacktriangleright ¹⁴N is one of the rare stable odd-odd nuclei with spin $I = 1$
- ‣ Nuclear shell model description

32

4/19/2024 So Chigusa @ University of Minnesota

"Introductory Nuclear Physics" by K. S. Krane

‣ A little algebra of spin synthesis $(2_{1/2} \otimes 3_1) \otimes (2_{1/2} \otimes 3_1)$

Axion-14N spin interaction

‣ A little algebra of spin synthesis $(2_{1/2} \otimes 3_1) \otimes (2_{1/2} \otimes 3_1)$

 $= (2_{1/2} \oplus 4_{3/2}) \otimes (2_{1/2} \oplus 4_{3/2})$

Axion-14N interaction

‣ A little algebra of spin synthesis $(2_{1/2} \otimes 3_1) \otimes (2_{1/2} \otimes 3_1)$

 $= (2_{1/2} \oplus 4_{3/2}) \otimes (2_{1/2} \oplus 4_{3/2})$

 $= (1_0 \oplus 3_1) \oplus (3_1 \oplus 5_2) \oplus (3_1 \oplus 5_2) \oplus (1_0 \oplus 3_1 \oplus 5_2 \oplus 7_3)$

Axion-14N interaction

- ‣ A little algebra of spin synthesis $(2_{1/2} \otimes 3_1) \otimes (2_{1/2} \otimes 3_1)$
	- $= (2_{1/2} \oplus 4_{3/2}) \otimes (2_{1/2} \oplus 4_{3/2})$ $= (1_0 \oplus 3_1) \oplus (3_1 \oplus 5_2) \oplus (3_1 \oplus 5_2) \oplus (1_0 \oplus 3_1 \oplus 5_2 \oplus 7_3)$

Axion-14N interaction

$$
\begin{aligned}\n\mathbf{H}_{int} &= \gamma_n \overrightarrow{B}_a^{(n)} \cdot \overrightarrow{S}_n + \gamma_p \overrightarrow{B}_a^{(p)} \cdot \overrightarrow{S}_p \\
&= \gamma_{14} \overrightarrow{B}_a \cdot \overrightarrow{I} + \cdots \\
\overrightarrow{S}_{p/n} &= \\
\overrightarrow{B}_a \mid \alpha \frac{1}{6} \left(\frac{g_{ann}}{m_n} + \frac{g_{app}}{m_p} \right)\n\end{aligned}
$$

gann 2*mn* + *gapp* 2*mp* −1

Constraints on axion-nucleon coupling

37

4/19/2024 So Chigusa @ University of Minnesota

• Constraints on $\tilde{f}_a \equiv \left| \frac{\delta a n}{2m} + \frac{\delta a p p}{2m} \right|$ with $\tilde{f}_a \sim \mathcal{O}(f_a)$ enhanced by long $\tilde{f}_a \sim \mathcal{O}(f_a)$ enhanced by long T_{2n}^* \sim 7 ms

Waldherr+, Nat. Nano. (2011)

Comagnetometry

\triangleright Recap: constraints on axion couplings from K ³He comagnetometer

38

4/19/2024 So Chigusa @ University of Minnesota

► At the compensation point $B_z = B_c$, insensitive to \overline{B}_\perp but sensitive to $\overline{B}_{a,\perp}$

Protocol for "comagnetometry"

magnetic field coupling with *e*[−] magnetic field coupling with ¹⁴N

‣ A protocol to cancel out DC magnetic noise effects

$$
\mathbf{r} \sim T_{2N}^* \sim 1 \,\text{ms}, \,\tau' \sim T_{2e}^* \sim 1 \,\mu\text{s}, \,\frac{\tau}{\tau'} = \frac{\gamma_e}{\gamma_N} \text{ work}
$$

s well!

Discussions and conclusions

- ‣ We explored the potential of NV center magnetometry for DM search
- ‣ Benefits of this approach include:
	- Wide dynamic range = broad DM mass coverage
	- Sensitivity to electron, neutron, and proton spins
- ‣ Some applications of advanced quantum metrology techniques
	- Entanglement
	- Comagnetometry protocol
	- Ancilla-assisted frequency upconversion

Now setting up an experimental environment at QUP with $N_V + cryogenic$

International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles WPI research center at KEK

40/40

Backup slides

Axion DM parameter space

Temperature -dependent axion mass with $y=8.16$

42/40

‣ Sensitivity curve is (SNR) ≡ *S* $\Delta S_{\rm sp}$ $= 1$

 $(t_{\text{obs}} < \tau_a)$

Sensitivity estimation ‣ The outcome of the spin-projection noise

 \blacktriangleright Noise contribution is ΔS_{sp} ~ 2 $N(t_{\rm obs}/\tau)$ 1 2 1

1 (t_{obs}/τ_a) $\frac{1}{4}$ $(t_{\text{obs}} > \tau_a)$

43/40

$$
|x\rangle = \frac{1}{\sqrt{2}} (|0\rangle + | + \rangle)
$$

$$
\Delta S = \frac{1}{2} \left[\langle x | \sigma_z^2 | x \rangle - (\langle x | \sigma_z | x \rangle)^2 \right]^{1/2} = \frac{1}{2}
$$

1

1

 $N(\tau_a/\tau)$

Sensitivity estimation

 \triangleright The axion-induced effective magnetic field has an unknown velocity $\mathbf{v}_{\rm DM}$ and phase δ

- The signal is proportional to $(v_{DM}^i)^2$ ($i = x, y, z$), which is averaged to Random phase *δ* ∈ [0,2*π*)
- The signal is estimated as a function of
- compared with the noise

$$
\mathbf{B}_{\text{DM}} \simeq \sqrt{2\rho_{\text{DM}}} \frac{g_{aee}}{e} \mathbf{v}_{\text{DM}} \sin(m_{\text{DM}} t + \delta)
$$

Random velocity v_{DM}

² (*i* = *x*, *y*, *z*), which is averaged to
$$
\sim \frac{1}{3}v_{DM}^2
$$

$$
\delta : S(\delta) \propto \cos\left(\frac{m\tau}{2} + \delta\right)
$$

• We obtain the average $\langle S \rangle_{\delta} = 0$ and the standard deviation $\sqrt{\langle S^2 \rangle \neq 0}$, which should be

4/19/2024 So Chigusa @ University of Minnesota

44 / 40

In many high-sensitivity measurements, technical noise such as $1/f$ noise is mitigated by moving the sensing bandwidth away from de via upmodulation. One method, common in NV-diamond magnetometry experiments, applies frequency $[12,32,41,42]$ or phase modulation $[19,43-45]$ to the MWs addressing a spin transition, which causes the magnetic-field information to be encoded in a band around the modulation frequency. Here we demonstrate a multiplexed $[46-49]$ extension of this scheme, where information from multiple NV orientations is encoded in separate frequency bands and measured on a single optical detector. Lock-in demodulation and filtering then extracts the signal associated with each NV orientation, enabling concurrent measurement of all components of a dynamic magnetic field. J. M. Schloss+ ʻ18

4/19/2024 So Chigusa @ University of Minnesota

Technical noise mitigation

II. MAGNETOMETRY METHOD

Comparison among different T_n^* **
N

► $T_2^* \sim 7 \,\text{ms}$ is observed, many attempts to make it longer in literature

Waldherr+, Nat. Nano. (2011)

46 / 40

Constraints on g_{ann} and g_{app}

47/40

Hahn-echo sequence of ^{14}N spins

 $\rightarrow T_2 \sim 9 \,\text{ms}$ is observed

4/19/2024 So Chigusa @ University of Minnesota

48/40

